为您找到与数学建模论文豆丁网相关的共200个结果:
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文范文,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代网络技术为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种教学方法运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者总结了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到其它所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关
浏览量:4
下载量:0
时间:
数学的运用越来越广泛了,利用建立数学模型解决实际问题的数学建模活动也应运而生了。下面是读文网小编为大家推荐的数学建模论文,供大家参考。
1、高中开设数学建模课程的背景
在高中设置的课程中,数学是一门必修课程,也是高考比重最大的一门课程,其最终目标是将数学知识融入现实问题中去,从而解决问题,这也是教育教学的最终目的。
要达到教育教学的最终目的,必须改革高中的数学课程教学,建设高中数学建模课程。高中数学建模课程可以根据简单的现实问题设置,针对实际生活中的一些简单问题进行适当的假设,建立高中数学知识能解决该问题的数学模型,进而解决该实际问题。因此,可以说高中数学建模课程是利用所学高中数学知识解决实际问题的课程,是将高中数学知识应用的一门课程,是培养出高技能人才的基础课程。
国家教育部制定的高中数学课程标准,重点强调:"要重视高中学生从自己的生活经验和所学知识中去理解数学、学习数学和应用数学,通过自己的感知和实际操作,掌握基本的高中数学知识和数学逻辑思维能力,让高中生体会到数学的乐趣,对数学产生兴趣,让其感觉到数学就在身边。"但是现实中高中数学的教学情况堪忧,基本上都是满堂灌的教学,学生不会应用,对数学毫无兴趣可言,主要体现在三个方面。
第一,虽然有很多学生以高分成绩进入高中学习,但是其数学应用的基础非常差,基本上是会生搬硬套,不会解决实际问题,更不会将数学知识联系到生活中来;也有少数学生数学基础差,没有养成好的数学学习习惯,导致产生厌恶数学的情绪,数学基础知识都没学好,更不用说是用数学解决实际问题。这少数学生就是上课睡觉混日子,根本不去学习,这与高中数学课程的开设目标截然不符。
第二,高中数学课程的教学内容与实际问题严重脱节,高中的数学教材中涉及的数学知识基本上都是计算内容,而不是用来处理和解决生活问题的,更是缺少数学与其他学科(比如化学、物理、生物、地理等)的相互渗透,即便高中数学课程中有一些数学应用的例子,也属于选学内容,教师根本不去讲、不涉及,这样导致高中数学课的教学达不到其教学目的,发挥不出功能。当前的高中数学课程就是教师讲基本的数学知识,学生记忆、计算、生搬硬套的过程,造成高中学生知识面窄,思维不够发散,与高中数学教学的任务严重不符,脱离了真正数学教学的轨道。
第三,一些高中数学教师教学方法单一,纯粹就是黑板粉笔授课,实行满堂灌,不仅缺乏多媒体等现代化教学手段教学,更是没有所谓的数学实验课程。这样的教学方法造成学生被动学习,无法理解,无法应用,导致大批学生产生厌学情绪。教师讲解基本的数学内容,要求学生记住公式,然后利用公式和常用的方法去做题,其目的是去应对高考。对高中学生进行问卷调查发现,当前的高中学生中有 80% 多的学生普遍认为数学很难学,不能理解,更不用说去应用。当前的高中数学教学模式使得学生更加反感数学学习,从而使得高中数学教学效果很不理想。
随着社会的发展、高考的改革,国家也认识到高中数学教学亟待进行改革,很多学校也进行了一系列改革。
1)增加选修教材,改变高中数学的教学内容,注重数学知识与现实问题的结合,引导高中学生去发现实际问题与数学之间的联系,提高高中学生对数学的兴趣,增强高中学生学习数学的信心。更有些学校开设了高中数学建模课程,对高中学生进行初步的数学建模教育,让学生了解数学的用处。
2)进行数学教师统一备课,使用现代化教学手段,特别是多媒体教学,改进数学教学的方法,提高数学教师的专业知识水平和数学素养,加强数学师资队伍建设。虽然进行了一系列改革,但在当前资源条件下,高中数学教师知识面窄,难以适应数学建模课程的教学,因此需要高中数学教师重新学习、提高认识,在数学教学的认识上有一个本质的改变。基于以上情况,高中数学建模课程的开设是非常有必要的,能很好地解决高中数学与社会实际的脱节问题,借助数学建模课堂将高中数学内容联系到生活中去,同时也可以推动当前高中数学课程的改革与发展。
2、高中开设数学建模课程的意义
开设高中数学建模课程有利于推动高中数学课程的教学改革和发展,数学是一切学科特别是理工类学科的基础,只有学好了数学,才有可能继续研究。高中数学教学的主要目的是让学生掌握数学基础知识,并将这些数学知识应用到实际问题中去,培养和提高学生的计算能力、逻辑思维能力、不断创新能力和理论联系实际的能力。
传统的高中数学教学进行的是"满堂灌"教学,以应试为主,根本目的是顺利通过高考。此模式下培养出来的学生有很多"低分高能",不具备解决和处理社会实际问题的能力,使得学生遇到实际问题就束手无策,有些学生对生活中遇到的简单数学问题都无法解决。开设高中数学建模课程的目标是对高中数学教学进行改革,找到改革的路径,使之摆脱当前高中数学课程所面临的局面,提高高中学生对数学课程的兴趣,为高中学生进入大学继续深造奠定基础,促进高中学生融入生活中来,真正培养出高素质的合格人才。
开设高中数学建模课程有利于当前高中教育教学的整体发展
1)开设高中数学建模课程是当前高中教育教学自身发展的需要。虽然很多高中的学生都是成绩优异的学生,但是仍旧有的学校生源较差,学生的素质较低。而且对于大部分高中的学生来说,数学普遍很差,对数学的学习不感兴趣。"满堂灌"的教学方式绝对不适合学生的学习,教师只讲授高中数学课本上的内容,不仅达不到高中数学教学的根本目标,也更加让学生产生厌恶学习数学的情绪,导致数学教学开展不顺利或者无法开展。反之,如果将实际问题带入高中数学教学中来,学生会感觉非常有趣,从而产生兴趣,也能够通过数学建模解决一些实际问题。同时,如果高中学生都掌握了一定的数学建模知识,进入社会或大学后,也会有所帮助的。
2)开设高中数学建模课程是国家培养高技能人才的需要。随着社会的发展,国家所需要的人才以实用型为主。
实用型人才的储备决定着国家的命运,任何时候对人才的需求都是以解决实际问题为主的。高中培养的人才一部分进入高校继续深造,也有相当一部分是进入社会工作的,因此,高中培养的学生也应该以解决实际问题为主,这也是企业、社会和国家所需要的人才。企业对操作型人才需求比例非常大,当高中学生掌握了数学建模知识,就能够快速学会操作企业中的设备,成为合格的企业所需的人才。
因此,开设高中数学建模课程,具有长远意义。
通过调查可以看出,提高动手能力,学生才能有更好的前途,学校也有良好的发展,最终形成良性循环。而高中数学建模课程的开设和发展就是为了培养高中学生解决社会实际问题的能力。毋庸置疑,高中数学教学必须针对高中学生的实际基础,改变和调整高中数学教学大纲和计划,做到理论联系实际,对高中数学课程进行彻底的改革,让高中学生进行数学建模活动,掌握解决社会实际问题的数学方法。
3、高中数学建模课程的定位
当前,数学建模活动在大学生中正如火如荼地开展,但在高中学生中的数学建模活动还处于初始阶段,大部分高中学校没有开设数学建模课程和参与数学建模活动,即便一些开设了数学建模课程的高中学校也是形同虚设,只是高中数学课程的辅助课程。对于高中数学课程的教学目标来说,开设高中数学建模课程是必须的,其定位也与大学生数学建模有着很大不同。
高中学生和大学生相比,起点不同,对数学教学内容的要求也不尽相同 大学生可以说完成了高中数学的学业,同时具有了一定的社会经历,数学认知比较全面。因此,大学生在进行数学建模活动时涉及范围广,是一些比较现实的复杂问题,更甚至可以是目前还没解决的社会热点问题。而高中的学生心理不够成熟,比较年轻,社会阅历明显不足,因此,高中数学所涉及的数学建模问题应定位于学生的生活实际问题,具有趣味性,能吸引他们有兴趣去主动解决。
高中学生和大学生相比,所学的数学知识不在一个档次 大学生数学建模活动已经涉及非常高深的数学专业内容,要用到计算机编程、运筹学、线性规划等方面的知识,可以解决非常复杂的社会热点问题;而高中学生的数学建模活动是以高中数学内容为基础,要求高中学生的数学建模问题是用高中数学知识能解决的问题,类似于数学应用题,但又不是数学应用题,相比应用题更注重实际背景。
高中学生和大学生数学建模活动的侧重点不同 大学生的数学建模活动注重数学建模的过程和解题思路,注重所建立的数学模型的实际效果和应用,对于计算机编程要求很高,对各种数学难题的计算也有着很高的要求;而高中学生的数学建模活动着重于高中学生对数学建模的认识,重在让高中学生产生数学建模思想,使高中学生产生用数学知识解决社会问题的想法,学会简单的数学建模的方法,总之,高中数学建模活动与大学生的数学建模活动存在较大差异,对于高中的数学建模课程必须定好位,才可能达到开设数学建模课程的目的。
参考文献:
[1] 李涛 . 中等职业学校数学建模课程建设之研究 [D]. 山东 : 鲁东大学 ,2013.
[2] 郑珺影。 数学建模在高中教学的应用[J]. 才智 ,2009(35)。
一、小学数学建模
"数学建模"已经越来越被广大教师所接受和采用,所谓的"数学建模"思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为"数学建模",其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。
二、小学数学建模的定位
1.定位于儿童的生活经验
儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。"数学建模"要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。
2.定位于儿童的思维方式
小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。
实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使"数量关系"与数学原型"一乘两除"结合起来,并且使学生利用抽象与类比的思维方法完成了"数量关系"的"意义建模",从而创建了完善的认知体系。
三、小学"数学建模"的教学策略
1.培育建模意识
当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是"生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释".培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。
2.体验建模过程
在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的,使学生通过对数学问题的研究和体验来提升自己"创建"新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备"模型"思想,处理问题的过程能具备数学家的"模型化"特点,从而使"模型思想"影响其生活的各个方面。
3.在数学建模中促进自主性建构
要使"知识"与"应用"得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼"现实问题"的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。
我们以《比较》这课程内容为例,我们通过"建模"这一教学方法,培养学生对">""<"和"="的掌握与使用,进而使学生明确了解"比较"的真正含义。首先,利用公园或者学校等地方的跷跷板为素材,让学生了解自己的哪个伙伴被压上去,哪个伙伴被压下来;然后让班级的高矮不同的同学进行身高比较。最后将上面这些情景在课堂上通过多媒体手段展现出来,由于这些情景都是学生曾亲身体验过的,此时再叫他们去做"重量"或者"高度"的比较,他们就可以轻松的掌握">""<"和"="等符号。这种将学生的实际生活与课堂教学相结合的方法,使学生能够轻松的创建其数学模型,提升他们自主建模的信心。
四、总结
数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。
参考文献:
[1]陈进春。基于数学建模视角的教学演绎[J].江苏教育,2013,(05):22-25.
[2]储冬生。数学建模:是一种方法,更是一种意识---基于建模思想的小学数学教学举隅[J].江苏教育,2011,(07):33-37.
[3]吴桂琴。情景教学在小学数学课堂中的应用[J].小学科学,2013,(09):44-47.
[4]陆荣。试析情景教学在小学数学教学中的应用[J].吉林教育,2010,(32):13-19.
摘要:文章从分析高等数学的内容结构出发,代写论文对数学结构与数学理解所起的作用,作了简单的剖析。
关键词:高等数学;数学结构;数学理解
对数学来说,结构无处不在,结构是由许多节点和联线绘成的稳定系统。代写毕业论文 数学中最基本的就是概念结构,它们之间的联系组成了知识网络的结构,剖析高等数学的知识结构,有助于加深对高等数学的理解。由于理解是学习数学的关键,学生可以通过对数学知识、技能、概念与原理的理解和掌握来发展他们的数学能力。从认知结构,特别是结构的建构观点来看,学习一个数学概念、原理、法则,如果在心理上能够组织起适当的、有效的认知结构,并使其成为个人内部知识网络的一部分,那么这才是理解。而其中所需要做的具体工作,就是需要寻找并建立恰当的新、旧知识之间的联系,使概念的心理表象建构得比较准确,与其它概念表象的联系比较合理,比较丰富和紧密。在学习一个新概念之前,头脑里一定要具备与之相关的储备知识,它们是支撑新概念形成的依托,并且这些有关概念的结构,是能够被调动起来的,使之与新概念建立联系,否则就不会产生理解。所以要使新旧知识能够互相发生作用,建立联系,有必要建立一个相应的数学结构,以加强对基础知识的理解。布鲁纳的认知结构学习论认为,知识结构的学习有助于对知识的理解和记忆,也有助于知识的迁移。在微积分的学习中,通过对其结构的剖析,使学习者头脑中的数学结构处于不断形成和发展之中,并将其发展的结构与已形成的结构统一起来,以达到对数学知识的真正理解。
1高等数学内容的结构特点
高等数学以极限思想为灵魂,以微积分为核心,包括级数在内,它们都是从量的方面研究事物运动变化的数学方法,本质上是几种不同性质的极限问题。连续性质是自变量增量趋于零时,函数对应增量的极限;导数是自变量增量趋于零时,函数的增量(偏增量)与自变量增量之比(差商)的极限;一元或多元积分都是和式的极限,而无穷级数则是密切联系序列极限的另一种极限。微分是从微观上揭示函数的有关局部性质,积分则从宏观上揭示函数的有关整体性质,它们之间通过微积分基本定理联系起来;广义积分把无穷级数与积分的内部沟通起来;而微分方程又从方程的角度把函数、微分、积分有机地联系起来,展示了它们之间的内在的依赖转化关系。
2如何利用结构加强理解
2.1注重整体结构理解
当代著名的认知心理学家皮亚杰认为“知识是主体与环境或思维与客体相互交换而导致的知觉建构,代写硕士论文 知识不是客体的副本,也不是有主体决定的先验意识。”虽然现今的教材基本上按一定框架编写,但其中相关的知识点要在学生的头脑中形成一个网络,并达到真正理解,还需要一个很长的过程,在这个过程中需要师生的共同努力。在教学中教师应将数学逻辑结构与心理结构统一起来,把学生看成是学习活动的主体,引导学生根据自己头脑中已有的知识结构和经验主动建构新的知识结构。心理学家J.R安德森认为:通过多种方式应用我们从自己的经验中得到知识,认知才能进行。理解知识的前提是理解它如何在头脑中表征的,这个过程主要表现为学生对概念的理解和掌握,在此基础上再加以运用,达到更深意义上的掌握。由于高等数学具有清晰的数学结构,因而其相关知识学习中也充满了知识的同化过程。在高等数学知识结构中,微积分建立在极限的基础之上。因此在高等数学中,新知识获得要依赖于认知结构中原有的适当观念,同时新旧知识还必须要有相互作用,即新旧意义的同化,才能形成高度分化的认知结构。如微分是差商的极限,积分为微分的逆运算,而定积分则为和的极限,只有将这些新旧概念在头脑中不断同化作用,才能形成新的高级知识结构网络,才能加强对相应数学知识的真正理解。这个过程实际上是一个内部认知过程,它要求学习者要有积极主动的精神,即有意义学习倾向;同时还要在学习者的认知结构中找到适当的同化点。学生的认知结构是从所接受的知识结构转化而来的,因此教学是一个动态的过程。
2.2注重结构中的概念理解
数学结构是有许多个结构所组成的,而个别的概念一定要融人其它概念,合成的概念结构才有用。数学中的概念往往不是孤立的,它们之间存在着一定的联系,理清概念之间的联系,既有助于数学结构的建立,有助于新的概念地自然引入,从而有助于对数学知识的理解与掌握。在微积分这部分内容中,多元函数的极限、连续、偏导数、全微分、方向导数这组概念之间的联系,与一元函数中的极限、连续、偏导数、微分概念之间的联系,这两者之间既有相同之处,又有不同之处,而且每个相对的概念之间又存在一定的联系与区别,多元函数中许多微分概念是在一元函数基础上的推广与发展,它们是密不可分。积分学中的定积分、重积分、二类曲线积分、二类曲面积分之间也存在着类似的关系。通过联想,可以从二维空间进入到三维空间,直至到更多维的空间,从有形进入无形,从现实世界进入虚拟世界,这样步步渗入,步步构建,不断引入新概念,不断更新组建数学结构,使学生头脑中的数学结构不断更新,不断完善,从而达到对知识的真正理解与掌握。
2.3在教学中利用数学结构加强学生的数学理解
教师对数学结构的理解对学生建立起自身的数学结构起着不可缺少的作用,代写医学论文只有理解数学结构,才能领会到数学逻辑结构所隐含的精神思想,才能建立自己的数学结构,才能理解数学。首先,在数学中利用高等数学结构的纵向与横向联系,有意识地帮助学生建立自己的知识结构,如在利用求曲边梯形的面积来引入定积分的概念时,其基本思维方法是:分割、近似代替,求和、取极限,最后得出定积分的概念。而这一方法同样可解决求曲顶柱体的体积、空间物体的质量、曲线段的质量等问题,区别仅在于取极限时趋向于零的元素不同而已。在具体每一章的讲解中,要着重介绍此章知识的数学结构中的内在联系及其本章的关键与核心的处理方法,使学生能够抓住本质,真正做到变被动学习为主动学习,主动建构自己本章的数学结构,并能用框图展现出知识间的内在联系,只有这样才能提高学生学习高等数学的兴趣和积极性,增加对高等数学知识的理解,提高高等数学学习的质量。帮助学生建立自己的数学结构,也有利于培养学生的思维能力、归纳能力、分析问题、解决问题的能力,还能促进其自学,调动和增强学生学习高等数学的信心和自觉程度。
“任何善意的、较为文明的政府都可以认为自己具有比其所统治的普通人高的教化水平,因而同大多数人的自发需要相比,应该能够向人民提供更好的教育。所以原则上说,就应该由政府向人民提供教育。”因此,教育不平等主要是由于存在阻碍农村教育自我生长的政策性因素,要有效解决城乡师资配置不合理问题,关键要靠政府部门的宏观调控。
第一,打破城乡二元结构藩篱,完善“以县为主”.管理体制。合理配置义务教育师资力量,政府关键要消除二元制社会结构的影响,采取积极措施改变城乡教育分割和城乡教育分治及重城市轻农村的倾向,把农村教育作为教育整体的有机组成部分,真正把农村教育与城市教育放在同等的位置。为有效改变教育资源在城市学校不合理集中的现象,我们需要深化教育体制改革,进一步完善“以县为主”的管理体制。县级教育行政部门要采取切实可行措施,统一配置县内教育资源,通过建立完善的政府问责制度,保障县域教育资源尤其是城乡义务教育教师资源平等。
第二,增加农村义务教育投入,统一城乡学校办学标准。为了平等地对待所有人,提供真正的同等机会,社会必须要更多地注意那些天赋较低和出生于较不利的社会地位的人们。为此,政府要优先保障农村教育发展,在资源配置上适当向农村地区倾斜,要增加对农村教育投入,统筹城乡教育经费,形成规范的教育财政拨款制度。为保证城乡学校办学条件一致,台湾在义务教育阶段实行“用一张图纸建造所有学校”的政策。因此,政府要统一城乡学校办学标准。缩小义务教育学校硬件建设差距,把县域内农村学校建设纳入城乡一体化综合发展规划,按照省制定的中小学办学条件基本标准,加快农村学校的现代化、标准化建设,力求办学条件平等,为城乡教师提供相同的工作环境。
第三,提高农村教师待遇,稳定现有农村教师队伍。在菲律宾,农村教师除享有基本工资外,还享有艰苦工作津贴;而俄罗斯一直实行农村教师工资待遇比城市教师高25%的政策。因此,为稳定目前农村教师队伍,我国必须提高农村教师工资水平,落实主管教育的县长责任制,缩小城乡教师工资差距。县财政要设立专项资金,建立并全面落实农村中小学教师津贴制度,努力提高农村教师生活待遇。对长期扎根农村教育的教师,除每月给予一定数额的资金补贴外,还可在职称评聘和职务晋升方面予以照顾,使其优先晋升高一级教师职称,以逐步提高农村中小学教师在中高级专业技术职称和表彰奖励中的比例。
第四,调整中小学教师编制标准,促进城乡教师合理流动。根据课程改革的需要和农村中小学实际,政府要合理核定教师编制标准,改变中小学教师编制城乡双重标准状况,统一教师编制城乡标准,在编制总额内对农村学校予以倾斜;畅通教师出入口,空出的中小学教师编制要及时补充,禁止以代课教师顶替编内教师;改革目前“教师校管”的管理方式,将教师的管理权限回收到县,由县教育行政部门统一聘任、统一管理人事、统一配置师资,使教师逐步淡化单位角色意识,彻底打破校际间师资保护的壁垒;同时要建立教师定期流动机制,从制度层面弱化学校对教师流动的限制,使教师的人事关系不受现在工作学校的束缚,以实现优质教师资源区域共享,改变城乡师资不合理现象。
第五,完善教育监督机制,平衡城乡教育发展。为保证义务教育师资平等,我们需要建立独立于政府和学校的第三方监督机构,监督管理政府和各级学校的教育平等状况,把办学条件均衡、教师学历合格率、高级职称教师比例等作为教育平等的重要指标,并以此作为考核干部和评价学校的主要参考依据。
参考文献:
[1]邵瑞珍,皮连生.教育心理学[M].上海:上海教育出版社,1988.
[2]李士琦.PME:数学教育心理[M].北京:高等教育出版社.
[3]毛京中,高等数学概念教学的一些思考[J].数学教育学报,2003,12(2).
[4]陈琼,翁凯庆.试论数学学习中的理解学习[J].数学教育学报,2003,12(1)
[5]张定强.剖析高等数学结构,提高学生数学素质[J].数学教育学报,1996,5(1)
浏览量:3
下载量:0
时间:
数学应用是数学教育的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是读文网小编为大家推荐的数学建模论文,供大家参考。
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中总结的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、抽象思维、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文报告中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化创新思维的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.
浏览量:4
下载量:0
时间:
在我国倡导素质教育的今天,数学建模受到的关注与日俱增,数学建模已经被应用于数学的教学中了。下面是读文网小编为大家推荐的数学建模论文,供大家参考。
一、我校学生数学建模现状
1.高职生的数学基础相当薄弱,学习习惯不好,然而数学知识理论性强,计算繁琐,并要求学生有足够的耐心和较强的理性思维能力,这就会让学生在学习数学相关知识时感觉有一定的难度。而另一方面,高职院校的课时量在尽量压缩,数学应用方面的内容只是蜻蜓点水,根本无法广泛而深入的涉及到位。例如,我校很多专业只开一个学期64课时的数学课,还有些专业甚至不开数学课,要建立一些比较高等的数学模型,高职学生的数学知识显然不够。
2.高职院校目前的教学方法多表现为填鸭式的教学法,过分强调严格的定理和抽象的逻辑思维,特别是运算技巧的训练讲得过于精细,考试形式单一。对于高职生来说,只要求他们会套用现成的公式及作一些简单的计算就行,但是目前的教学不能使学生发挥自己的主观能动性,也调动不了学生学习数学的兴趣。
3.目前我校只开设了一门数学方面的公共选修课《数学建模》,一共16次课,仅仅靠课堂上讲的内容让学生来参加数学建模竞赛远远不够,另外,学生又要同时兼顾其他专业课程,因此学习效果不好。
4.组织数学建模赛前培训的师资队伍理论薄弱,只靠一两个青年教师承担培训指导任务,缺乏参赛经验丰富的老教师。
5.我校学生参加数学建模的积极性不高,我校已经连续参加几年的数学建模竞赛,但最多的也就5个队,仍有多数学生称未听过有这项比赛,说明宣传不是很到位。
6.目前组队参赛的任务是交给基础部来完成,而基础部没有学生,这就会造成找队员困难的问题。
二、参加数学建模比赛的意义
1.有利于培养学生综合解决问题的能力
因为数学建模最后提交的成果是交一篇完整的论文,对于大多数学生来说,都是第一次,它可以提高学生如何把数学知识用到实际生活中的能力,提高学生合理利用网络查阅资料的能力,提高学生的创新意识和团队协作能力等。很多参赛学生事后感叹到团队合作能力对于建模比赛很重要,这对他们以后参加工作也会有很好的帮助。
2.有利于促进高职数学课程的改革
大多数学校的高职数学课还是采用教师在上面讲,学生在下面听的方法,殊不知对于高职生而言,他们不但听不懂,而且也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,老师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。
三、数学建模课的发展建议
由于参加数学建模竞赛可以激起学生学习数学的兴趣,提高学生运用数学和计算机技术解决问题的综合能力,激励学生积极参加课外科技活动,开拓学生的知识视野,培养学生的创新意识和团队合作意识,推动高等数学教学体系,教学内容和教学方法的改革。基于此,给出一些建议如下:
1.把数学建模的管理层次上升到学院,因为只有学院的大力支持,领导的高度重视才是提高高职学生数学建模能力的首要条件,而且只有学院的倡导和支持,各部门在宣传数学建模方面时才会更加尽职尽责,不会出现推诿的现象。
2.成立数学建模协会小组,并有学校资金的支持,这样可以把对数学建模有兴趣的同学集中在一起,让他们之间相互讨论。建模协会应该有协会会长及其他管理者,这样他们在运营平时的协会工作时才能各司其职,并有一定的组织性和纪律性。协会平时可以组织一些经典的数学建模的小案例以海报的形式展现在全校学生面前,或者是以有奖竞猜的方法提高学生的参与性,这样不仅可以达到宣传数学建模的效果,也可以更好的提高学生的理性思维能力。
3.平时开设数学建模选修课,假期集中培训备战国赛,由于我校的数学建模课一般开设在大一的下学期,而技能大赛的比赛时间通常是选修课开课之前,这就导致了学生参加技能大赛时根本不知道数学建模比赛比的是什么。而且选修课只有一个老师教,力度太小。应该是大一开学就开始开设相关的数学建模选修课,几个数学老师分工,每个数学老师讲授一块内容,这样学生了解的知识面会更广一些。另外,必须赛前集中培训,因为平时的选修课只是让学生了解,但并没有让他们系统的练习,所以赛前培训就是重点讲数学建模习题,并让学生以三人一个小组模拟训练。
4.技能大赛的数学建模比赛应该和学校其他教学系的比赛错开时间,因为学院的技能大赛一般是三天,多数项目的比赛时间通常只有半天,但数学建模恰恰是技能大赛中最特殊的一项比赛,首先是耗时长,正规的数学建模比赛是需要三天的时间,需要学生选定题目后在三天的时间里选定题目后完成一篇完整的论文;其次是必须三人一项小组,由于数学建模的工作量较大,需要三个人共同协作,缺少一个队员就会拖延整个小组的工作进度;再者数学建模比赛期间学生是比较自由的,可以上网,可以和其他人讨论。正是由于这些因素,一旦数学建模的比赛和学生报名参加的其他比赛冲突时,学生立马就会先去参其他项目的比赛,等空闲时间才来参加这个,这就导致了队员缺席,学生缺乏凝聚力,主动退赛等等的情况。因此,建议技能大赛时的数学建模比赛可以放在技能大赛比赛开始的前一个周末,把比赛时长缩短为周末两天,这样既不会和其他比赛冲突,也可以让学生在有限的时间里发挥他们的潜能。
5.建设一支指导数学建模竞赛的师资队伍。实际上,一个人的知识和视野毕竟是有限的,数学建模的指导教师不但需要有扎实的数学理论基础,还需要有一定的软件编程能力和较强的解决实际问题的能力,俗话说的好“团结就是力量”,因此,必须有一个指导数学建模竞赛的队伍,教师之间必须有很好的沟通,在合作中互帮互助,共同进步,从而促进学院数学建模活动的顺利开展
6.学院每年选派数学建模指导老师去参加各类数学建模教师培训班,组织他们去本市数学建模竞赛组织好的兄弟院校去参观学习,交流宝贵的建模经验。同时,学校出台一系列奖励政策,在各类大型竞赛中,学院应给获奖的学生一定的物质奖励,并在期末考评,评奖等方面给予优先考虑。
摘 要:该文描述了出现在双连杆机械臂动态参数模型中的问题,并对其性能进行了评估。创建了机械臂的运动模型,连接在绝对空间中链接位移与夹持器中心位置,解决了链接位置的正向运动问题。同时得到一组非线性函数,建立了机械臂的广义坐标和笛卡尔坐标之间的连接。使用Denavit-Hartenberg方法对运动链进行编码。作为解决逆运动学问题的结果,获得一个给定的位置和夹持器输出链路方向的广义坐标方程系统。在数学软件MATLAB(Simulink)中分析得到系统动力学的模型。该文的结论通过数学实验进行证实。
关键词:双连杆机械臂 运动链 动态模型
根据设计的机器人的指定技术特点与必要性来提供所需要的动态性能,系统性能,并且给定重放轨迹运动的精度,运动的稳定性。实现所期望性能的一种方式是在机器人设计和配置时使用机器人仿真。
仿真方法可以通过减少在概念设计阶段找到解决方案的迭代次数,从而显著缩短设计时间。在机器人系统流程过程中建模可以获得等效信号,操作机器人;考虑各种因素对机器人和它各单位的影响;计算其稳定性、速度、精度;优化单独的模块与整个机器人系统作为一个整体。现代机器人系统的动力学建模方法涉及建立真正的机器人运动学和动力学适当的数学模型。
机器人动力学模型不仅可以计算它的设计特性,还可以计算其速度(时间控制),动态过程的性质(单调性,非周期性,和振荡)。
研究过程中对机械臂的操作是必要的,首先,使它成为一个运动模型,即一个模型连接它与绝对空间中的夹持器的中心位置的位移的链接[1-2]。
指定在三维空间中点的位置就足以确定其在绝对(固定)坐标系统中的坐标。描述一个刚体需要与它自己(相关的)坐标系相结合。
在国际实践中普遍使用的方法是基于对Denavit-Hartenberg坐标系的采用[3]。目前的工作是致力于在双连杆机械臂的动态过程建模。
1 机械臂运动学
分析组成机械臂的两个链接:关于一个广义坐标的垂直轴线旋转链接和沿水平轴偏移的一个广义链路坐标。这些坐标位移决定了机械臂的位置。为了描述机械臂运动学问题必须要解决正、逆运动学问题。
这些任务的解决方案用于机械臂工作区的建设。另外,由此产生的方程组是随后的处理运动任务的起点。解决方案是一组建立机械臂广义坐标与笛卡尔坐标之间联系的非线性函数。图1显示了该机械臂的运动学。
采用Denavit-Hartenberg方法编码运动链。然后建立对机械臂的运动学正问题的绝对和相对坐标形式的约束方程:
-在一般形式上
-与特定的值
因此:
获得机械臂的运动方程:
链接1:
链接2:
获得扩展链路的整体速度:
逆运动学问题是确定一个给定位置和它的输出链路定位(夹具)的机器人的广义坐标[4-5]。有多种方法用于求解逆运动学问题,但大多数是与超越方程系统的解相关。
让我们用三角法来解决这一问题。
从方程组发现后,针对这种划分获得
显然,在第一连杆的旋转角度可以被定义为
For to find the use identity ,thenobtain:,obvious that ,then finally get ,hence.
查找使用的身份,进而获得:,显而易见的是,最终得到了想要的结果,因此。
其结果是,我们得到一个广义坐标方程系统:
随时间变化的变量集,设置唯一标识的机器人连杆的相对位置。因此,机械系统的配置称为广义坐标。在完整力学系统中一些广义坐标的n等于自由度的数目。
2 机械臂动力学
研究人员对机器人动力学有着极大的兴趣。当导出机器人动力学方程的解析形式时可以用拉格朗日或者阿佩尔形式进行描述。在正式说明的情况下,拉格朗日需要对动能和广义力推导出解析表达式,在使用形式化描述阿佩尔的情况下―能量,加速度,和转化的广义力。确定必要的动能,在一般情况下,为了确定质量速度的构成系统和固体角速度矢量实心体的中心刚体的动能在绝对坐标系的变换下是不发生改变的。
这使我们能够获得惯性张量的变换公式之交
一旦将每个环节的动能进行描述解析,找到整个系统的总动能很重要:
找到的每一个链接的动能:
各链接的转动惯量:
让我们假设
经过变换和替换得到
获取拉格朗日方程的每一个环节。区分系统的总动能交替关于。
该操作的结果是,我们得到了各链接下面的等式:
链接1:
链接2:
(1)
结合系统得出方程:
(2)
柯西变换结果系统的一般形式,替代:
(3)
3 模拟分析
分析所得的方程系统,在MATLAB特别是在其组件Simulink中建立一个数学工程的系统动力学模型。图2表示的是一个由柯西的正常形式的方程得到的一个系统动态模型。该模型是通用的,可用于参数不同的确定质量和尺寸的机械臂的机器人的研究。建模的目的是确定其发生过程的动作速度和性质,确认机械臂关节耦合(在同步运动)及速度和转速的行为。
在建模过程中已经使用下列参数:重量负载-,一个夹持器的延伸速度-,绕垂直轴旋转的速度-,其余参数在建模过程中进行计算。
根据对模型的研究结果显示,进行定性评估。
建模:
对旋转模块;
对机械臂的扩展模块。
瞬态过冲:
静态误差值:
过渡过程中的上升时间:
得到的定性评估结果相当接近于具有适当质量和尺寸和参数的双连杆机器人的试验评估。评估结果表明,该模型在评估有另一个处理重量和力-速度特性的类似机器人动态参数时十分有效。
4 结语
因此,建立的双连杆机器人模型允许评估他们在这个模式下的行动速度,产生的性质,确定在他们同步运动时的关节耦合时刻。
参考文献
[1] Zenkevich S.L.,Yushchenko A.S., Fundamentals of robotic manipulator control[M].Moscow,2ed,2004.
[2] Pshihopov V.H.,Time-optimal trajectory control of electromechanical robotic manipulator[J].Electromechanics,2007(1):51-57.
随着中职课程的不断改革和发展,越来越多的学校逐渐将教学的重点放到了专业课程的学习中,而对于基础课程的重视程度则越来越低,要想使这一点得到有效的改善,就必须激发其基础课程教学的活力。下面就具体对将中职数学建模教学和计算机教学融合这一教学方法进行具体分析研究,以期促进中职数学教学的发展。
一、中职数学建模教学与计算机教学融合的作用
在中职数学教学中,实现数学建模教学和计算机教学融合是当前教材改革的需要,数学建模和计算机教学的融合能够将教材内容和所学专业实现紧密的结合,另外,数学建模和计算机教学的融合可以将数学教学形象化,能够使学生更加直观的了解和学习新的知识,这主要是由于中职生的基础参差不齐,相当一部分的数学基础都比较差,因此数学建模和计算机教学的融合,能够使具体的教学内容和学生学习水平相适应,这样学生就能够更好的学习和吸收新知识。
二、当前在数学建模中存在的问题
在中职数学教学中,由于传统教学对其影响比较深远,所以不管从教学内容、方法、课程设置等方面,都存在一些问题,而这些问题直接影响了中职数学教学质量的提升,下面具体对其中存在的问题进行阐述。
1、数学教学建模和计算机软件没有进行有效的结合
当前,虽然数学建模在中职数学教学中已经得到了应用,但是这种教学方式还没有和计算机软件进行有机的结合,这种情况下,即使数学模型建立起来,最终也会因为客观原因得不到精确的计算和解答,这样一来,数学建模解决问题的能力就被大大的削弱了。从人才培养的角度来说,也使得学生在学习中少了进一步深入研究和学习的机会,严重的不利于应用型人才的培养,从这个角度来看,数学建模和计算机教学的融合已经是中职数学教学发展的趋势所在。
2、在教学中过分偏向于理论化
数学教学中过于偏向理论化,是当前中职数学教育中常见的一个问题。这种情况的产生主要是由于,数学教育受传统教学方式的影响,以往的数学教学都是完全从课本出发,进行枯燥的理论知识的教学,这样就会使学生失去学习数学的兴趣,由于中职生源大多数学习水平相对较低,并且其中大部分学生本身对于数学的学习兴趣就不够浓厚,甚至对数学的学习有抵触心理或者畏惧心理,如果在教学方式上还是以理论作为教学的主要方式,这样就会更进一步导致学生对于数学厌学情绪的产生,并且过于理论化的教学方式也不能将新知识直观的呈现在学生面前,无疑就增加了学习的难度。
三、中职数学建模教学与计算机教学融合的方法
1、在数学建模教学中融入计算机软件的相关内容
在以往的中职数学教学中,几乎都是过分偏重于理论,忽视了教学建模和计算机在其中的作用,多媒体应用也是少之又少。因此,要想改善这一现状,就应该将计算机软件学习和数学建模课程的学习实现联系,这样才能使中职数学教学的质量得到提升。比如,采用计算机技术导入新课程,以激发学生的学习热情,从而积极参与课堂教学活动,让学生由被动学习转为主动学习;且采用计算机技术以更丰富的形式突出教学重点,引导学生更全面的理解知识结构,更快的理清知识思路;再采用计算机技术帮助学生在课堂上练习巩固,从而有效丰富知识,并充分提高学生的学习兴趣。
2、在传统教学中,将建模教学和计算机软件有机的融入
在中职数学教学中将建模教学和计算机软件进行融入可以将需要的知识更加形象的展现在学生的面前,并且概念直观的展现,还能够提高学生的学习兴趣,从另一方面来说,学生能在、通过直观的效果,看到相关概念在实际中的应用,从而更好的达到学以致用的效果;其次,在对一些问题进行求解的时候,教师可以引导学生进行线性模型的建立,然后对具体的问题实现转换,从而将问题简单化吗,最终达到解决问题的目的;最后,函数的学习在中职数学中也是比较重要的一部分,而在模型的建立中,其实大多数都是函数关系的建立,根据函数关系的建立,将需要面对的实际问题转化成数学问题,然后利用计算机将其进行转化,进而实现对其的求解。
要想在中职数学教学中融入建模教学和计算机教学的融入,还应该注意循序渐进,将计算机软件的学习逐步的在数学建模教学中进行渗透。另外,在建模和计算机软件融入的教学中,相应的例子应该是生活中存在的一些问题,只有这样,学生才能通过对实例的理解,从而不断的深化学习模型的建立。最后,在实际的教学活动中,应该将计算机学习融入进去,利用相关的软件进行教学,这样学生就能够直观的看到计算机软件解决问题的优势所在,同时学生的学习兴趣和积极性也会被调动起来,中职数学课堂教学质量也会得到提高。
综上,当前的中职数学教学中,数学教学建模和计算机软件的应用还没有得到广泛的应用,并且在实际的教学活动中,大多数教师依旧沿用传统额教学方式,这样无疑就消磨了学生的学习积极性和主动性。不过随着对数学教学方式的深入研究,相信数学建模教学和计算机软件教学一定能够在中职数学教育中得到更好的应用。
浏览量:2
下载量:0
时间:
在我国倡导素质教育的今天,数学建模受到的关注与日俱增。数学建模已成为国际、国内数学教育中稳定的内容和热点之一。下面是读文网小编为大家整理的关于数学建模的论文,供大家参考。
1高等数学教学中数学建模思想应用的优势
1.1有助于调动学生学习的兴趣
在高等数学教学中,如果缺乏正确的认识与定位,就会致使学生学习动机不明确,学习积极性较低,在实际解题中,无法有效拓展思路,缺乏自主解决问题的能力。在高等数学教学中应用数学建模思想,可以让学生对高等数学进行重新的认识与定位,准确掌握有关概念、定理知识,并且将其应用在实际工作当中。与纯理论教学相较而言,在高等数学教学中应用数学建模思想,可以更好的调动学生学习的兴趣与积极性,让学生可以自主学习相关知识,进而提高课堂教学质量。2.2有助于提高学生的数学素质随着科学技术水平的不断提高,社会对人才的要求越来越高,大学生不仅要了解专业知识,还要具有分析、解决问题的能力,同时还要具备一定的组织管理能力、实际操作能力等,这样才可以更好的满足工作需求。高等数学具有严密的逻辑性、较强的抽象性,符合时代发展的需求,满足了社会发展对新型人才的需求。在高等数学教学中应用数学建模思想,不仅可以提高学生的数学素质,还可以增强学生的综合素质。同时,在高等数学教学中,应用数学建模思想,可以加强学生理论和实践的结合,通过数学模型的构建,可以培养学生的数学运用能力与实践能力,进而提高学生的综合素质。
1.3有助于培养学生的创新能力
和传统高等数学纯理论教学不同,数学建模思想在高等数学教学中应用的时候,更加重视实际问题的解决,通过数学模型的构建,解决实际问题,有助于培养学生的创新精神,在实际运用中提高学生的创新能力。数学建模活动需要学生参与实际问题的分析与解决,完成数学模型的求解。在实际教学中,学生具有充足的思考空间,为提高学生的创新意识奠定了坚实的基础,同时,充分发挥了学生的自身优势,挖掘了学生学习的潜能,有效解决了实际问题。在很大程度上提高了学生数学运用能力,培养了学生的创新意识,增强了学生的创新能力。
2高等数学教学中数学建模思想应用的原则
在进行数学建模的时候,一定要保证实例简明易懂,结合日常生活的实际情况,创设相应的教学情境,激发学生学习的兴趣。从易懂的实际问题出发,由浅到深的展开教学内容,通过建模思想的渗透,让学生进行认真的思考,进而掌握一些学习的方法与手段。在实际教学中,不要强求统一,针对不同的专业、院校,展开因材施教,加强与教学研究的结合,不断发现问题,并且予以改进,达到预期的教学效果。教师需要编写一些可以融入的教学单元,为相关课程教学提供有效的数学建模素材,促进教师与学生的学习与研究,培养个人的教学风格。除此之外,在实际教学中,可以将教学重点放在大一的第一学期,加强教师引导与教育,根据实际问题,重视微积分概念、思想、方法的学习,结合数学建模思想,让学生充分认识到高等数学的重要性,进而展开相关学习。
3高等数学教学中融入数学建模思想的有效方法
3.1转变教学观念
在高等数学教学中应用数学建模思想,需要重视教学观念的转变,向学生传授数学模型思想,提高学生数学建模的意识。在有关概念、公式等理论教学中,教师不仅要对知识的来龙去脉进行讲解,还要让学生进行亲身体会,进而在体会中不断提高学习成绩。比如,37支球队进行淘汰赛,每轮比赛出场2支球队,胜利的一方进入下一轮,直到比赛结束。请问:在这一过程中,一共需要进行多少场比赛?一般的解题方法就是预留1支球队,其它球队进行淘汰赛,那么36/2+18/2+10/2+4/2+2/2+1=36。然而在实际教学中,教师可以转变一下教学思路,通过逆向思维的形式解答,即,每场比赛淘汰1支球队,那么就需要淘汰36支球队,进而比赛场次为36。通过这样的方式,让学生在练习过程中,加深对数学建模思想的认识,提高高等数学教学的有效性。
3.2高等数学概念教学中的应用
在高等数学概念教学中,相较于初高中数学概念,更加抽象,如导数、定积分等。在对这些概念展开学习的时候,学生一般都比较重视这些概念的来源与应用,希望可以在实际问题中找出这些概念的原型。实际上,在高等数学微积分概念中,其形成本身就具有一定的数学建模思想。为此,在导入数学概念的时候,借助数学建模思想,完成教学内容是非常可行的。每引出—个新概念,都应有—个刺激学生学习欲的实例,说明该内容的应用性。在高等数学概念教学中,通过实际问题情境的创设与导入,可以让学生了解概念形成的过程,进而运用抽象知识解决概念形成过程,引出数学概念,构建数学模型,加强对实际问题的解决。比如,在学习定积分概念的时候,可以设计以下教学过程:首先,提出问题。怎样求匀变速直线运动路程?怎样计算不规则图形的面积?等等。其次,分析问题。如果速度是不变的,那么路程=速度×时间。问题是这里的速度不是一个常数,为此,上述公式不能用。最后,解决问题。将时间段分成很多的小区间,在时间段分割足够小的情况下,因为速度变化为连续的,可以将各小区间的速度看成是匀速的,也就是说,将小区间内速度当成是常数,用这一小区间的时间乘以速度,就可以计算器路程,将所有小区间的路程加在一起,就是总路程,要想得到精确值,就要将时间段进行无限的细化。使每个小区间都趋于零,这样所有小区间路程之和就是所求路程。针对问题二而言,也可以将其转变成一个和式的极限。这两个问题都可以转变成和式极限,抛开实际问题,可以将和式极限值称之为函数在区间上的定积分,进而得出定积分的概念。解决问题的过程就是构建数学模型的过程,通过教学活动,将数学知识和实际问题进行联系,提高学生学习的兴趣与积极性,实现预期的教学效果。
3.3高等数学应用问题教学中的应用
对于教材中实际应用问题比较少的情况而言,可以在实际教学中挑选一些实际应用案例,构建数学模型予以示范。在应用问题教学中应用数学建模思想,可以将数学知识与实际问题进行结合,这样不仅可以提高数学知识的应用性,还可以提高学生的应用意识,并且在填补数学理论和应用的方面发挥了重要作用。对实际问题予以建模,可以从应用角度分析数学问题,强化数学知识的运用。比如,微元法作为高等数学中最为重要、最为基础的思想与方法,是高等数学普遍应用的重要手段,也是利用微积分解决实际问题,构建数学模型的重要保障。为此,在高等数学教学中,一定要将其贯穿教学活动的始终。在实际教学中,教师可以根据生命科学、经济学、物理学等实际案例,加深学生对有关知识历史的了解,提高学生对有关知识的理解,培养学生的数学建模意识。又比如,在讲解导数应用知识的时候,教师可以适当引入切线斜率、瞬时速度、边际成本等案例;在讲解极值问题的时候,可以适当引入征税、造价最低等案例。这样不仅可以激发学生学习的兴趣与积极性,还可以创设良好的教学氛围,对提高课堂教学效果有着十分重要的意义。
4高等数学教学中应用数学建模思想的注意事项
4.1避免“题海战术”
数学是一个系统学科,需要从头开始教学,为此,教师一定要注意循序渐进。首先,在教学过程中,教师可以从教材出发,对概念、定理等进行讲解,让学生进行掌握与运用,转变教学模式,让学生牢记教材知识。其次,慎重选择例题练习,避免题海战术,培养学生的数学建模思想,逐渐提高学生的数学素质。
4.2强调学生的独立思考
在以往高等数学教学中,均是采用“填鸭式”的教学模式,不管学生是否能够接受,一味的讲解教材知识,不重视学生数学建模思想的培养。目前,在教学过程中,教师一定要强调学生独立思考能力的培养,通过数学模型的构建,激发学生的求知欲与兴趣,明确学习目标,培养学生的数学思维,进而全面渗透数学建模思想,提高学生的数学素质。
4.3注意恐惧心理的消除
在高等数学教学中,注意消除学生学习的恐惧心理及反感,提高课堂教学效果。在实际教学过程中,培养学生勇于面对错误的品质,让学生认识到错误并不可怕,可怕地是无法改正错误,为此,一定要提高学生的抗打击能力,帮助学生树立学习的自信心,进而展开有效的学习。学习是一个需要不断巩固和加强的过程,在此过程中,必须加强教师的监督作用,让学生可以积极改正自身错误,并且不会在同一个问题上犯错误,提高学生总结与反思的能力,在学习过程中形成数学思想,进而不断提高自身的数学成绩。
5结语
总而言之,高等数学课堂教学是培养学生数学品质的主要场所之一,通过高等数学教学和数学建模思想的结合,可以加深学生对高等数学知识的理解,进而可以提高学生对高等数学知识的运用能力。目前,在高等数学教学中,一定要重视数学建模思想的融入,改进教学模式,促使教学内容的全面展开,完成预期的教学任务,提高学生的数学水平。
一、在高等数学教学中运用数学建模思想的重要性
(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。
(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。
(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。
二、高等数学教学中数学建模能力的培养策略
1.教师要具备数学建模思想意识
在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。
2.实现数学建模思想和高等数学教材的互相结合
教师在讲解高等数学时,对其中能够引入数学模型的章节,要构建相关的数学模型,对其提出相应的问题,进行分析和处理。在该基础上,提出假设,实现数学模型的完善。教师在高等数学的教学中融入建模意识,让学生潜移默化的感受到建模思想在高等数学教学中应用的效果。这样有利于提高学生数学知识的运用能力和学习兴趣。例如,在进行教学时,针对学生所学专业的特点,选择科学、合理的数学案例,运用数学建模思想对其进行相应的加工后,作为高等数学讲授的应用例题。这样不仅能够让学生发现数学发挥的巨大作用,而且还能够有效的提高学生的数学解题水平。另外,数学课结束后,转变以往的作业模式,给学生布置一些具有专业性、数学性的习题,让学生充分利用网络资源,自主建立数学模型,有效的解决问题。
3.理清高等数学名词的概念
高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学
教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。
4.加强数学应用问题的培养
高等数学中,主要有以下几种应用问题:
(1)最值问题
在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。
(2)微分方程
在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。
(3)定积分
微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。
三、结语
总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。
浏览量:3
下载量:0
时间:
利用数学知识解决现实生活的具体问题了成为当今数学界普遍关注的内容,利用建立数学模型解决实际问题的数学建模活动也应运而生了。下面是读文网小编为大家整理的数学建模论文,供大家参考。
数学,源于人们对生产与生活实际问题,抽象出的数量关系与空间结构发展而成的.近年来,信息技术飞速发展,推动了应用数学的发展,使数学日益渗透到社会各个领域.中考实际应用题目更贴近日常生活,具有时代性、灵活性,涉及的模型有方程、函数、不等式、统计、几何等模型.数学课程标准指出,教师在教学中应引导学生从实际背景中理清数学关系、把握变化规律,能从实际问题中建立数学模型.教师要为学生创造用数学的氛围,引导学生参与自主学习、自主探索、自主提问、自主解决,体验做数学的过程,从而提高解决实际问题的能力.
一、影响数学建模教学的成因探析
一是教师未能实现角色转换.建模教学离不开学生“做”数学的过程,因而教师在教学中要留有让学生思考、想象的空间,让他们自主选择方法.然而部分教师对学生缺乏信任,由“引导者”变为“灌输者”,将解题过程直接教给学生,影响了学生建模能力的提高.二是教师的专业素养有待提高.开展建模教学,需要教师具有一定的专业素养,能驾驭课堂教学,激发学生的兴趣,启发学生进行思考,诱发学生进行探索,但是部分教师专业素养有待提高,或认为建模就是解应用题,或重生活味轻数学味,或使讨论活动流于形式.三是学生的抽象能力较差.在建模教学中,教师须呈现生活中的实际问题,其题目长、信息量大、数据多,需要学生经历阅读提取有用的信息,但是部分学生感悟能力差,不能明析已知与未知之间的关系,影响了学生成功建模.
二、数学建模教学的有效原则
1.自主探索原则.
学生长期处于师讲、生听的教学模式,沦为被动接受知识的“容器”,难有创造的意识.在教学中,教师要为学生创设轻松愉悦的探究氛围,让学生手脑并用,在探索、交流、操作中提高解决问题的能力.
2.因材施教原则.
教师要着眼于学生原有的认知结构,要贴近学生的最近发展区,引导他们从旧知的角度思考,找出问题的解决方法。
3.可接受性原则.
数学建模内容的设计,要符合学生的年龄特点和认知能力,能让学生理解所探究的内容.若设计的问题不切实际,往往会扼杀学生的兴趣,教师要密切联系教学内容、生活实际,让学生有能力解决问题.
三、初中数学建模教学的几种模式
1.自学讨论式.
“先学后教”改变了传统教学中“师讲生听”、“师说生练”的模式,在教师的导学、导疑、导思中激发学生的学习兴趣,引发学生的积极思考,让他们在交流中思想不断碰撞,形成新观点,从而自身认知水平得到提高.教师要通过创设问题情境导学,引发学生的探究.例如,如图,在河岸L的同侧有M、N两个村庄,现拟在河岸边修一座水泵站P,要求使管道PM、PN所用的水管最短,另修一码头Q,要求码头到M、N两村的距离相等,试画出P、Q的位置.在提出问题的基础上,学生通过选点、测量,开展交流讨论.学生1认为,是不是和异侧相同?学生2认为,如果M、N在直线L的异侧,连接MN即为最短.学生3认为,在同侧的话,可以根据轴对性的性质,将之转移为异侧.学生4认为,这有点像照镜子.这样,学生将实际问题转化为轴对称的知识解决,在交流中彼此分享、相互促进、相互提高.
2.引导探究式.
教师提出问题,让学生通过观察、探究提出自己的猜想,在推理、论证的基础上获得结论、掌握规律.例如,某景区团体购买公园门票价为1~50人的13元/张,50~100人的11元/张,100人以上9元/张.甲团少于50人,乙团人数不超过100人,两团共计应付票费1392元.若组成一个团体购票,应付1080元.(1)乙团人数是否也少于50人,为什么?(2)求甲乙两团各有多少人?学生猜想乙团人数少于50人,进而推算两团人数会少于100人,团购价应少于1300元,与1392元矛盾,因而乙团人数应不少于50人,不超过100人.
3.活动参与模式.
教师提出问题,引发学生小组活动探究,进行捜集数据、整理分析,然后解决问题.例如,某件商品的售价从原来的每件400元经两次调价后调至每件324元.经调查,该商品每降价2元,即可多销售10件,若该商场原来每月可销售500件,那么经过两次调价后,每月可销售该商品多少件?学生先计算每次的降价率为10%,然后根据“件数×单价=销售额”列出方程.
总之,数学建模教学,有利于学生将实际问题转化为数学模型来解,能够提高学生分析、解决问题的能力。
1数学建模的过程
1.1模型准备
首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设
在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立
在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解
建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果
应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。把求得的数学结果返回到实际问题中去,检验其合理性。如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用
2.1DNA序列分类模型
DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。对于模型的好坏,可选取已知分类的DNA序列进行检验,若按照该模型做出的分类与已知分类相符,则模型可取,反之则需调试样本变量,直到取得满意的结果为止。
2.2传染病模型
为了能定量的研究传染病的传播规律,人们建立了各种类型的模型来预测、控制疾病的发生发展,比如说,SI模型(适用于患病后难以治愈)、SIS模型(适用于患病者治愈后不具有免疫力)、SIR模型(适用于患病者治愈后具有终身免疫力)、SIRS模型(适用于患病者治愈后具有暂时免疫力)等。这里以SIR模型为例来做具体地说明。假设不考虑人口的出生、死亡、流动等因素,设总人口始终保持一个常数N,记t时刻的易感染者、已感染者和已恢复者的人数分别为S(t)、i(t)和r(t),则可建立下面的三房室模型:
2.3疗效评价模型
对于同一种疾病,医生根据其经验的不同往往会制定出不同的治疗方案,而每种方案的经济成本不同并且会产生不同程度的副作用,因此合理评价其疗效就有着重要的意义。目前常用的疗效评价模型有多元非线性回归模型、模糊评价模型、灰色关联度模型以及BP神经网络模型等。不论哪种模型都需要先确定评价参数,所谓评价参数指的是以什么来衡量疗效,如在艾滋病疗效评价中,可采用CD4的浓度、HIV的浓度或是CD4与HIV浓度的比值来衡量疗效的好坏。而选取模型时,只要它能把样品的综合疗效客观真实的体现出来,都是有效的。
3结束语
数学建模在生物医学领域的研究中起着重要的作用,特别是较高层次的医学科研往往有赖于合理的数学模型的建立,因此要培养高水平的医学科研人员就必须要加强数学建模在高等医学院校教学中的地位。而就目前来说,高等医学院校对数学教学的重视程度还远远不够,不管是数学教学的内容方面还是课程体系的设置方面都亟待改革。
浏览量:3
下载量:0
时间:
在我国倡导素质教育的今天,数学建模受到的关注与日俱增。数学建模已成为国际、国内数学教育中稳定的内容和热点之一。下面是读文网小编为大家整理的有关数学建模小论文,供大家参考。
1高等数学教学中数学建模思想应用的优势
1.1有助于调动学生学习的兴趣
在高等数学教学中,如果缺乏正确的认识与定位,就会致使学生学习动机不明确,学习积极性较低,在实际解题中,无法有效拓展思路,缺乏自主解决问题的能力。在高等数学教学中应用数学建模思想,可以让学生对高等数学进行重新的认识与定位,准确掌握有关概念、定理知识,并且将其应用在实际工作当中。与纯理论教学相较而言,在高等数学教学中应用数学建模思想,可以更好的调动学生学习的兴趣与积极性,让学生可以自主学习相关知识,进而提高课堂教学质量。2.2有助于提高学生的数学素质随着科学技术水平的不断提高,社会对人才的要求越来越高,大学生不仅要了解专业知识,还要具有分析、解决问题的能力,同时还要具备一定的组织管理能力、实际操作能力等,这样才可以更好的满足工作需求。高等数学具有严密的逻辑性、较强的抽象性,符合时代发展的需求,满足了社会发展对新型人才的需求。在高等数学教学中应用数学建模思想,不仅可以提高学生的数学素质,还可以增强学生的综合素质。同时,在高等数学教学中,应用数学建模思想,可以加强学生理论和实践的结合,通过数学模型的构建,可以培养学生的数学运用能力与实践能力,进而提高学生的综合素质。
1.3有助于培养学生的创新能力
和传统高等数学纯理论教学不同,数学建模思想在高等数学教学中应用的时候,更加重视实际问题的解决,通过数学模型的构建,解决实际问题,有助于培养学生的创新精神,在实际运用中提高学生的创新能力。数学建模活动需要学生参与实际问题的分析与解决,完成数学模型的求解。在实际教学中,学生具有充足的思考空间,为提高学生的创新意识奠定了坚实的基础,同时,充分发挥了学生的自身优势,挖掘了学生学习的潜能,有效解决了实际问题。在很大程度上提高了学生数学运用能力,培养了学生的创新意识,增强了学生的创新能力。
2高等数学教学中数学建模思想应用的原则
在进行数学建模的时候,一定要保证实例简明易懂,结合日常生活的实际情况,创设相应的教学情境,激发学生学习的兴趣。从易懂的实际问题出发,由浅到深的展开教学内容,通过建模思想的渗透,让学生进行认真的思考,进而掌握一些学习的方法与手段。在实际教学中,不要强求统一,针对不同的专业、院校,展开因材施教,加强与教学研究的结合,不断发现问题,并且予以改进,达到预期的教学效果。教师需要编写一些可以融入的教学单元,为相关课程教学提供有效的数学建模素材,促进教师与学生的学习与研究,培养个人的教学风格。除此之外,在实际教学中,可以将教学重点放在大一的第一学期,加强教师引导与教育,根据实际问题,重视微积分概念、思想、方法的学习,结合数学建模思想,让学生充分认识到高等数学的重要性,进而展开相关学习。
3高等数学教学中融入数学建模思想的有效方法
3.1转变教学观念
在高等数学教学中应用数学建模思想,需要重视教学观念的转变,向学生传授数学模型思想,提高学生数学建模的意识。在有关概念、公式等理论教学中,教师不仅要对知识的来龙去脉进行讲解,还要让学生进行亲身体会,进而在体会中不断提高学习成绩。比如,37支球队进行淘汰赛,每轮比赛出场2支球队,胜利的一方进入下一轮,直到比赛结束。请问:在这一过程中,一共需要进行多少场比赛?一般的解题方法就是预留1支球队,其它球队进行淘汰赛,那么36/2+18/2+10/2+4/2+2/2+1=36。然而在实际教学中,教师可以转变一下教学思路,通过逆向思维的形式解答,即,每场比赛淘汰1支球队,那么就需要淘汰36支球队,进而比赛场次为36。通过这样的方式,让学生在练习过程中,加深对数学建模思想的认识,提高高等数学教学的有效性。
3.2高等数学概念教学中的应用
在高等数学概念教学中,相较于初高中数学概念,更加抽象,如导数、定积分等。在对这些概念展开学习的时候,学生一般都比较重视这些概念的来源与应用,希望可以在实际问题中找出这些概念的原型。实际上,在高等数学微积分概念中,其形成本身就具有一定的数学建模思想。为此,在导入数学概念的时候,借助数学建模思想,完成教学内容是非常可行的。每引出—个新概念,都应有—个刺激学生学习欲的实例,说明该内容的应用性。在高等数学概念教学中,通过实际问题情境的创设与导入,可以让学生了解概念形成的过程,进而运用抽象知识解决概念形成过程,引出数学概念,构建数学模型,加强对实际问题的解决。比如,在学习定积分概念的时候,可以设计以下教学过程:首先,提出问题。怎样求匀变速直线运动路程?怎样计算不规则图形的面积?等等。其次,分析问题。如果速度是不变的,那么路程=速度×时间。问题是这里的速度不是一个常数,为此,上述公式不能用。最后,解决问题。将时间段分成很多的小区间,在时间段分割足够小的情况下,因为速度变化为连续的,可以将各小区间的速度看成是匀速的,也就是说,将小区间内速度当成是常数,用这一小区间的时间乘以速度,就可以计算器路程,将所有小区间的路程加在一起,就是总路程,要想得到精确值,就要将时间段进行无限的细化。使每个小区间都趋于零,这样所有小区间路程之和就是所求路程。针对问题二而言,也可以将其转变成一个和式的极限。这两个问题都可以转变成和式极限,抛开实际问题,可以将和式极限值称之为函数在区间上的定积分,进而得出定积分的概念。解决问题的过程就是构建数学模型的过程,通过教学活动,将数学知识和实际问题进行联系,提高学生学习的兴趣与积极性,实现预期的教学效果。
3.3高等数学应用问题教学中的应用
对于教材中实际应用问题比较少的情况而言,可以在实际教学中挑选一些实际应用案例,构建数学模型予以示范。在应用问题教学中应用数学建模思想,可以将数学知识与实际问题进行结合,这样不仅可以提高数学知识的应用性,还可以提高学生的应用意识,并且在填补数学理论和应用的方面发挥了重要作用。对实际问题予以建模,可以从应用角度分析数学问题,强化数学知识的运用。比如,微元法作为高等数学中最为重要、最为基础的思想与方法,是高等数学普遍应用的重要手段,也是利用微积分解决实际问题,构建数学模型的重要保障。为此,在高等数学教学中,一定要将其贯穿教学活动的始终。在实际教学中,教师可以根据生命科学、经济学、物理学等实际案例,加深学生对有关知识历史的了解,提高学生对有关知识的理解,培养学生的数学建模意识。又比如,在讲解导数应用知识的时候,教师可以适当引入切线斜率、瞬时速度、边际成本等案例;在讲解极值问题的时候,可以适当引入征税、造价最低等案例。这样不仅可以激发学生学习的兴趣与积极性,还可以创设良好的教学氛围,对提高课堂教学效果有着十分重要的意义。
4高等数学教学中应用数学建模思想的注意事项
4.1避免“题海战术”
数学是一个系统学科,需要从头开始教学,为此,教师一定要注意循序渐进。首先,在教学过程中,教师可以从教材出发,对概念、定理等进行讲解,让学生进行掌握与运用,转变教学模式,让学生牢记教材知识。其次,慎重选择例题练习,避免题海战术,培养学生的数学建模思想,逐渐提高学生的数学素质。
4.2强调学生的独立思考
在以往高等数学教学中,均是采用“填鸭式”的教学模式,不管学生是否能够接受,一味的讲解教材知识,不重视学生数学建模思想的培养。目前,在教学过程中,教师一定要强调学生独立思考能力的培养,通过数学模型的构建,激发学生的求知欲与兴趣,明确学习目标,培养学生的数学思维,进而全面渗透数学建模思想,提高学生的数学素质。
4.3注意恐惧心理的消除
在高等数学教学中,注意消除学生学习的恐惧心理及反感,提高课堂教学效果。在实际教学过程中,培养学生勇于面对错误的品质,让学生认识到错误并不可怕,可怕地是无法改正错误,为此,一定要提高学生的抗打击能力,帮助学生树立学习的自信心,进而展开有效的学习。学习是一个需要不断巩固和加强的过程,在此过程中,必须加强教师的监督作用,让学生可以积极改正自身错误,并且不会在同一个问题上犯错误,提高学生总结与反思的能力,在学习过程中形成数学思想,进而不断提高自身的数学成绩。
5结语
总而言之,高等数学课堂教学是培养学生数学品质的主要场所之一,通过高等数学教学和数学建模思想的结合,可以加深学生对高等数学知识的理解,进而可以提高学生对高等数学知识的运用能力。目前,在高等数学教学中,一定要重视数学建模思想的融入,改进教学模式,促使教学内容的全面展开,完成预期的教学任务,提高学生的数学水平。
一、在高等数学教学中运用数学建模思想的重要性
(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。
(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。
(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。
二、高等数学教学中数学建模能力的培养策略
1.教师要具备数学建模思想意识
在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。
2.实现数学建模思想和高等数学教材的互相结合
教师在讲解高等数学时,对其中能够引入数学模型的章节,要构建相关的数学模型,对其提出相应的问题,进行分析和处理。在该基础上,提出假设,实现数学模型的完善。教师在高等数学的教学中融入建模意识,让学生潜移默化的感受到建模思想在高等数学教学中应用的效果。这样有利于提高学生数学知识的运用能力和学习兴趣。例如,在进行教学时,针对学生所学专业的特点,选择科学、合理的数学案例,运用数学建模思想对其进行相应的加工后,作为高等数学讲授的应用例题。这样不仅能够让学生发现数学发挥的巨大作用,而且还能够有效的提高学生的数学解题水平。另外,数学课结束后,转变以往的作业模式,给学生布置一些具有专业性、数学性的习题,让学生充分利用网络资源,自主建立数学模型,有效的解决问题。
3.理清高等数学名词的概念
高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学
教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。
4.加强数学应用问题的培养
高等数学中,主要有以下几种应用问题:
(1)最值问题
在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。
(2)微分方程
在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。
(3)定积分
微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。
三、结语
总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。
浏览量:2
下载量:0
时间:
高中数学教育对每个学生来说是至关重要的,高中学习不仅使学生掌握数学基础知识与基本技能,而且还对他们良好个性品质的形成起到了非常积极的促进作用。下面是读文网小编为大家整理的高中数学教育教学论文,供大家参考。
一、引言
数学是高中教育的重要内容,不仅是对学生逻辑、空间等思维的训练,而且使学生在以后的学习和工作中更具有条理和规律,但是很多学校在开展数学教学的过程中往往忽略了人文素养的培养,认为这是文科的主要任务,在高中数学中怎能体现出人文精神呢?
二、存在的问题
(一)高考的压力是数学教育改革的桎梏
在国内,我们存在着高考制度,我们需要通过高考取得更好教育资源的资格,因此,在高中阶段,尤其是高三的时候,很多学生的学习压力都很大,主要原因就是要应付高考.高中的数学是高考的重要组成部分,因此,数学教育很多时候都是被高考牵着鼻子走,很多地方都是针对高考中数学试题的特点和问题,有针对性地进行教学,对于高考不考查的内容基本上没有涉及,因此对于人文素养方面存在严重的缺失.对于学生和家长而言,考上一个名牌大学就意味着自己向着社会的上层迈进了一大步,很多同龄人就被自己甩在身后了,因此高考对于学生的影响有着十分特殊的意义.
(二)一些教师在人文教育方面教学方法和手段不多
新出版的高中数学标准提出了更加全面的教学内容,其中人文教育也成为了现在高中数学的一部分,很多教师在教学过程中需要不断进行知识和能力的提升,才能有效适应这种变化,因为需要讲授的知识更多了,涉及面也更广了,然而现在的高中数学教师对于人文精神这种文科内容涉及的都不是很多,在教学过程中需要不断拓展这个方面知识结构,同时在这个方面的教学手段和方法也需要不断加大观摩和学习的时间,增强自己在这个方面的认识.只有教师在数学与人文教育结合方面的知识能力有所提高,在教学过程中的手段和方法不断提升,数学与人文素养的结合才能更加紧密.
(三)高中数学教材中的人文知识还是偏少
将人教版高中数学教材通读一遍之后,发现教材中关于数学历史、人物等方面的知识还是偏少,2001年出版的高中数学教材第一册只有两个内容.而且很多教师和学生反映教材中的人文知识可能过于专业化,教师讲起来没有十分枯燥,学生听起来没有什么趣味性,在教学过程中需要不断贯穿十分专业的知识,一方面是教材中缺少相应的人文知识点,另一方面教师在讲授的过程中也不是很重视,造成了现在这种数学人文知识的缺乏.
三、建议
(一)教师人文知识的提升
教师的水平高低是现在教学效果是否良好的主要因素,有了一桶水,才能讲出一碗水的东西,要想加强高中数学教学中的人文教育,需要教师不断提高自己的人文素养,有效拓展自己的人文知识储备,只有具备了这些人文知识,在教学过程中才能游刃有余,在教学过程中才能将这些知识传授给学生,其实这种人文知识的加入使得整个高中数学的教学更加具有趣味性,是整个数学教学的调味剂,可以有效提升学生学习的兴趣,使得教学参与程度不断提高.例如:人教版高中数学必修1的第三章关于函数的应用中,需要教师将函数与之前学习的方程进行对比,这种对比有利于学生对函数的概念更好的理解,在讲述方程的时候,可以引用历史上的一些例子,像《九章算术》中关于方程的描述,需要教师在数学的人文素养上不断提升自己知识的广度.
(二)教学思想的改进
在教学过程中需要不断拓展人文思想的比重,其实现在教材中已经出现了一些人文内容,但是由于教师认为数学考试中不可能出现对这些人文知识的考查,进而在教学时间的分配上出现了厚此薄彼的情况,这种思想需要进一步扭转.需要对教师的思想进行再教育,使得教师明白教育的目的不是为了高考,而是对人的整体素养的提升,在教学过程中需要不断拓展人文精神在教师心中的份量.例如:必修2第三章关于直线与方程的内容中,课本就有关于笛卡尔与解析几何关系的描述,在教学之前,教师需要提高对这一知识点的认识,才能拓展对这段历史的知识面,对笛卡尔这个数学家进行深入地了解,同时对他与解析几何的关系进行重点研究.
(三)教学方法的调整
人文知识教学过程要注意教学方法,只有行之有效的教学方法才能达到最终的教学效果,人文知识的教学不能像讲授数学知识那么注重逻辑性,更多需要的是运用幻灯片来烘托教学氛围,可以在教学之前让学生上网查一下资料,课堂上让学生说说自己对于这个问题的看法,由于人文知识不具备标准答案,因此可以有一种发散式的探讨,这都是针对人文知识的教学方法,与数学知识点更加注重逻辑性有着本质的区别.例如:教材关于函数介绍的顺序是一次、二次、反比例函数,对于函数的单调性只是针对这几种函数,学生只能通过相应的函数图形对单调性进行一种感性认识,严格的数学证明也存在一定的枯燥性.因此,在介绍函数单调性的时候需要进行相应的引导.教师可以利用一到两分钟的时间,列举具有人文气息的一些例子,一个人走在公园里的台阶从上到下是依次降低的.这种例子更加具有亲和力,学生更容易接受.通过这些例子引出本节课程的教学内容.
(四)生活化教学的引入
很多生活中的一些问题都可以轻易地构建出数学模型,数学的作用就在针对这些数学模型进行解答出最优的结果,其中在构建数学模型的过程中,就是需要将数学知识生活化,从生活中抽象出模型,这就需要学生具有一定的人文素养,这是抽象数学模型的知识条件和基础,在教学过程中可以将人文素养的提升与生活化抽象出数学模型联系起来,实现数学教育与人文精神提升的完美结合.
四、结束语
高中数学在人文精神的教学中有着很多问题,有一些是我们可以通过教师的能力提升而转变的,但是还有一部分是制度上的问题,例如:高考制度对数学人文精神教育的影响,需要在制度层面采取办法,从而从根本上解决高中数学中人文知识教学的短板问题.
1.前言
创新是一个社会、一个国家发展的动力源泉,是我国站立在世界列强、屹立在民族之林的保证。我国的数学教育在世界上一直走在时代的前沿,但是我国学生的创新能力却存在普遍落后的现象。教育的发展要顺应时代的变化,尤其在我国处于一个转型期的关键时期,更要通过教育来培养出一批将来社会的栋梁人才。因为培养学生们的创新意识和创新能力,也成为了课堂上教学重点的重中之重。从数学课程来分析,创新能力主要表现在学生对教学知识的接受和学习能力,对既出数学问题的理解和分析能力,对应用数学的掌握和运用能力,这部分能力成为了高中数学教育中必须抓重的部分。为了达到学生创新能力的培养,需要教师们在课堂上不断的设立问题,打开学生们的大脑,鼓励学生的发散思维,让学生在分析和思考中,培养创新能力。本文将就如何提高高中数学教学中学生们的创新意识和创新能力进行论述。
2.高中数学教育学生创新意识的养成
创新意识的培养,就是为了使学生能够自觉的用创新的思维、用多种角度来解决高中数学学习中的问题。教师应该打破以往的教学模式,顺应时代的变化,采用现代化的教学手段,在理论方面实现创新的同时,注重实际的运用,使学生习惯用创新的思维和眼光去看待问题和解决问题。
(1)鼓励提问和质疑,培养创新的行为。所有的创新,离不开对事件本身的质疑。只有发现问题,才会想办法去解决问题,才会形成一定的创新意识。高中数学知识的教授对学生而言本来就存在很多难以接受的点,鼓励学生大胆的提问,对命题和真理大胆的质疑,而不是用搪塞的方法把学生的创新苗头给掐死在摇篮里。用宽容的态度,用引导的方式来处理学生们的提问和质疑,尝试一题多解的方法来拓宽学生的思维方式,用对命题真理推演的过程提高学生的发现和分析能力。通过这些,能有效的使学生们自觉的思考问题,形成自我主动性的创新,也就是潜移默化的培养出了创新意识。
(2)构建新型的课堂氛围。传统的教和学的方式已经很难适应新时代的教育需求,创新意识的养成离不开互动性的氛围,应该给予学生们主动思考的空间和时间,所以课堂气氛的营造是培养学生创新能力很重要的一点。教师在教学的过程中应当充分的和学生们进行互动,多提出问题,把自己定位成问题讨论的参与者,和学生们一起解决问题。同时对于学生们的理性思维问题,给予充分的帮助,让学生们体会到课堂的温馨,才会促使他们愿意在课堂上去共同解决问题。
3.高中数学教育学成创新能力的培养
数学教学是一个复杂的动态的教学模式,随着时代的发展,数学的教学模式也在一直发生改变。而培养创新能力是时代发展的结果,是社会进步的前提,所以在多变的高中数学教学中培养学生的创新能力,是新时代社会的需求。
(1)发展学生的探索能力。高中的数学学习不应该知识简单的接受和模仿,还应该多多自主探讨,尝试合作交流,培养自学的方式。多样性的学习,能放拓宽学生的思维方式,对创新能力的培养有着促进作用。发展学生的自学能力。自学能力是实现学生终生学习的基础,是学生不断进步、不断超越自己的基本能力。教师应该放开手脚,给予学生们充分的时间,引导他们自主学习。形成了自主学习,就形成了自主思考的能力,再结合平时课堂上正确的引导,这种自主思考能力能很快的转变为创新能力,成为学生终身受用的财富。提倡探索性学习。在教学的过程中,教师不能只扮演一个传授知识的角色,而应当以学生的兴趣为中心,利用数学的基本原理和相应的辅助教学手段,给学生们提出问题,一起进行探索性的解决问题,培养学生的思维能力。把理论知识和其他应用科学结合在一起,不断的为数学的教学注入活力,探索式的思考和解决问题,将有利于学生创新能力的培养。合作学习。善于合作的人,才能更适合社会的发展。教学过程中,教师应当注意避免学生一个人去面对问题,而是多方共同讨论,在合作讨论的过程中,学生们取长补短,形成了自主的学习,能为自己的思维方式进行自我的改善,这样能极大的激发学生的创新能力。
(2)利用解题教学方式。创新能力的培养,不但在于使学生们发现问题的本质,更注重的是使学生们自主解决生活的问题或者学术上的难题。所以教师应该在学生基本掌握了理论的基础上,自主学习解题的技巧,从多个角度来看到问题,形成良好的思维习惯。所以教师应该避免说教式教学,应该让学生们自己发现问题,然后从所学的知识中自主进行验证,这样即可以充分调动学生们的想象力,还能使学生们的思维方式拓宽,提高创新能力。
(3)教师教学观念的更新和学科的创新教育。数学是一门活学活用的学科,在高中数学教育中培养学生的创新能力,也就是培养学生们的思维方式,让他们形成自主的发现问题、解决问题的套路,最后形成一般规律。所以在这其中,教师必须具有创新意识,改变传统的教学思路,采用研究性教学。4.结语当下最普遍的教育方式便是从学生的兴趣和好奇心出发,引导学生耳朵理性思维能力,拓宽学生的自主学习和逆向思维的能力,利用高中数学独具的魅力和问题解决的多样性,促使学生们自我创新意识的进步,在高中数序的学习中,培养学生们自己的创新意识和创新能力,给新时代的社会人才的需求打下坚实的基础。
浏览量:3
下载量:0
时间:
数学教学的最终目的是给学生形成一种数学素养和数学能力。数学习题是学习数学、教授数学、研究数学的必要途径,它也是考试中比较公正合理的一种工具。下面是读文网小编为大家整理的初中数学小论文,供大家参考。
数学,源于人们对生产与生活实际问题,抽象出的数量关系与空间结构发展而成的.近年来,信息技术飞速发展,推动了应用数学的发展,使数学日益渗透到社会各个领域.中考实际应用题目更贴近日常生活,具有时代性、灵活性,涉及的模型有方程、函数、不等式、统计、几何等模型.数学课程标准指出,教师在教学中应引导学生从实际背景中理清数学关系、把握变化规律,能从实际问题中建立数学模型.教师要为学生创造用数学的氛围,引导学生参与自主学习、自主探索、自主提问、自主解决,体验做数学的过程,从而提高解决实际问题的能力.
一、影响数学建模教学的成因探析
一是教师未能实现角色转换.建模教学离不开学生“做”数学的过程,因而教师在教学中要留有让学生思考、想象的空间,让他们自主选择方法.然而部分教师对学生缺乏信任,由“引导者”变为“灌输者”,将解题过程直接教给学生,影响了学生建模能力的提高.二是教师的专业素养有待提高.开展建模教学,需要教师具有一定的专业素养,能驾驭课堂教学,激发学生的兴趣,启发学生进行思考,诱发学生进行探索,但是部分教师专业素养有待提高,或认为建模就是解应用题,或重生活味轻数学味,或使讨论活动流于形式.三是学生的抽象能力较差.在建模教学中,教师须呈现生活中的实际问题,其题目长、信息量大、数据多,需要学生经历阅读提取有用的信息,但是部分学生感悟能力差,不能明析已知与未知之间的关系,影响了学生成功建模.
二、数学建模教学的有效原则
1.自主探索原则.
学生长期处于师讲、生听的教学模式,沦为被动接受知识的“容器”,难有创造的意识.在教学中,教师要为学生创设轻松愉悦的探究氛围,让学生手脑并用,在探索、交流、操作中提高解决问题的能力.
2.因材施教原则.
教师要着眼于学生原有的认知结构,要贴近学生的最近发展区,引导他们从旧知的角度思考,找出问题的解决方法。
3.可接受性原则.
数学建模内容的设计,要符合学生的年龄特点和认知能力,能让学生理解所探究的内容.若设计的问题不切实际,往往会扼杀学生的兴趣,教师要密切联系教学内容、生活实际,让学生有能力解决问题.
三、初中数学建模教学的几种模式
1.自学讨论式.
“先学后教”改变了传统教学中“师讲生听”、“师说生练”的模式,在教师的导学、导疑、导思中激发学生的学习兴趣,引发学生的积极思考,让他们在交流中思想不断碰撞,形成新观点,从而自身认知水平得到提高.教师要通过创设问题情境导学,引发学生的探究.例如,如图,在河岸L的同侧有M、N两个村庄,现拟在河岸边修一座水泵站P,要求使管道PM、PN所用的水管最短,另修一码头Q,要求码头到M、N两村的距离相等,试画出P、Q的位置.在提出问题的基础上,学生通过选点、测量,开展交流讨论.学生1认为,是不是和异侧相同?学生2认为,如果M、N在直线L的异侧,连接MN即为最短.学生3认为,在同侧的话,可以根据轴对性的性质,将之转移为异侧.学生4认为,这有点像照镜子.这样,学生将实际问题转化为轴对称的知识解决,在交流中彼此分享、相互促进、相互提高.
2.引导探究式.
教师提出问题,让学生通过观察、探究提出自己的猜想,在推理、论证的基础上获得结论、掌握规律.例如,某景区团体购买公园门票价为1~50人的13元/张,50~100人的11元/张,100人以上9元/张.甲团少于50人,乙团人数不超过100人,两团共计应付票费1392元.若组成一个团体购票,应付1080元.(1)乙团人数是否也少于50人,为什么?(2)求甲乙两团各有多少人?学生猜想乙团人数少于50人,进而推算两团人数会少于100人,团购价应少于1300元,与1392元矛盾,因而乙团人数应不少于50人,不超过100人.
3.活动参与模式.
教师提出问题,引发学生小组活动探究,进行捜集数据、整理分析,然后解决问题.例如,某件商品的售价从原来的每件400元经两次调价后调至每件324元.经调查,该商品每降价2元,即可多销售10件,若该商场原来每月可销售500件,那么经过两次调价后,每月可销售该商品多少件?学生先计算每次的降价率为10%,然后根据“件数×单价=销售额”列出方程.
总之,数学建模教学,有利于学生将实际问题转化为数学模型来解,能够提高学生分析、解决问题的能力。
数学教学重要的是教学方法的选择,但要想知道图形与多媒体的教学渗透使数学在我们生活中发挥的作用,应该从不同的方面进行分析.从宏观方面,对于数学的教学,授课教师越来越将学生的自主学习提上日程,使得学生方法学习成为初中数学学习的重中之重.多媒体平台在发挥相当大的作用的同时,对于学生数学学习的要求也越来越高.不管是数学的公式的引入,还是数学的解题思路引导等等,逐步地做到将数形结合与多媒体完美地应用于学生自主性学习数学之中,逐步推进数学教学的不断升级.相信在学校要全面推进素质教育的背景下,在师资力量上,教师应该而且是必须认真学习不同教学模式的理论及适当的多媒体操作技术,在学校全面推进学生合作学习模式的同时,做好多媒体平台与数学教学的有效整合.只有这样,才能不断地充分发挥学生的对多样化教学方式的吸引,为做好进一步提高学校的教学质量和学生的自主学习能力,逐步发挥多媒体平台及其图形结合在教学中的作用.在信息化和素质教育的大背景下,不管是学校还是学习的个人,都应该逐步认识到多媒体平台对学科综合教学的重要性.
一、重视多媒体与图形的引入意识
面对越来越开放的教学方式和现代化信息技术的发展,以多媒体信息平台为驱动力的教学方式不断得到更加积极地推广和普及.多媒体信息平台的应用在为学生们提供高效快捷的获取知识和交换信息的同时,也为莘莘学子提供了有效拓展知识面的方式,尤其是在数学的教学中,学生在不断追求学习效果的同时,逐步认识到获取知识的方式的重要性.多媒体平台的构建并与初中数学教学的整合,在一定程度上,也可以说是很大的程度上,就是把现代的越来越流行的多媒体信息理论、多媒体教学技术和多媒体教学方法等融入到初中数学教学中的同时,逐步推行学生自主学习和合作式的学习模式,进一步起到多媒体信息平台在学生合作式学习的基础上,让这种模式更加融合到学生学习方法之中,更好地促进学生之间的交流式学习,形成一种全新的基于多媒体信息平台的合作式教学与学习模式.对于现代的教学模式和方法,更应该追求的是先进的教学模式和适应学生的学习方式,让学生能在更值得学习的学习模式上不断去取得更大的进步.初中的数学学习是数学学习的重要阶段,是不断从更深层次的方面去学习数学的时期,我们要从过去一直遵从的“哑巴式和应试教育”模式中跳出来,在利用多媒体信息平台基础上再结合先进的教学技术和设备,做到不断激发学生的积极性的同时,发挥合作式教学与多媒体信息平台的作用,为学生带来更多更优秀的学习资源和方法,深层次地培养学生的数学思维和解题能力.
二、注重学习观念的更新,加强多样化学习
在数学学习的最初阶段,每部分都应该是贯穿这种模式.例如,在进行数学函数的教学时,不能将《一次函数》和《二次函数》单独来讲,应该将函数的教学结合起来,以函数的图形解题方法和学生的讨论作为课堂上的主旋律,这时候教师完全可以利用学校多媒体信息平台的作用,比如说图形的特点,然后总结函数的图形特点,及其实际的应用题等等.从这种基于图形和多媒体的教学中,培养了学生在不断地相互学习活动中的主动性思维、创造性以及合作式的学习意识.使学生掌握好的合作式学习方法,不断取得深层的进步,逐步提高自主学习和协作探究式学习的能力.对于学校来说起到较好的教学效果,对于学生来说掌握了一种较好的学习方式.这其中的一个重要问题就是,学校在掌握了多媒体信息平台教学模式的基础上,更重要的是将这种模式应用在教学上,要培养学生自觉接受多样式学习的模式,逐步树立起正确的数学学习观,让这种学习方式能够为学生所综合利用.
三、图形多媒体教学为引导,拓展实际性
单一的教学方式已不能完全满足学生对知识的需求,因为他们没有形成一种适合自己的学习方式或者数学思维.因此,引导式教学方式在激发学生数学思维中发挥着至关重要的作用.多媒体教学方式的混合使用,使得学生能够从多方面看待同一个问题,这样能够起到举一反三,深入学习的作用,而且能够逐步提高学生对问题的准确定位和合理解决,为学生提供有效的教学引导,进而寻找问题后能够对症下药.一方面,这个在共基于图形和多媒体信息平台下的多样式学习不仅可以充分发挥信息技术的优点来增强学习者的学习动机;另一方面还能凭借教学模式的多样性使学习者更好地构建对知识的理解以培养学习者的搜集信息的能力,进而增强学习策略的构建和交流能力的提高.例如,初三下《四边形》一整章的学习,授课教师已有的教学方式是,先一节一节地讲,如多边形的内角和、平行四边形、矩形菱形正方形、中心对称图形、梯形几节依次讲述,授课教师可以通过多媒体的形式,想让学生在整体上对这一章都有一个大体的把握,总结图形的共有特点,再结合练习逐层进行讲解和练习.再比如,要进行积极的探讨教学活动.教师组织学生结合学习实际进行研讨,经常共同讨论多媒体信息平台资源或者课件的结构,以及如何在最新的教学模式下不断更新制作数学授课方案.如在《数据的集中趋势和离散程度》一课中,授课教师可以让学生通过平台的作用,开展丰富多彩的数学展示活动,鼓励学生将看到的数据的变化走向等,与同学们交流;再比如《二次函数与反比例函数》一课中,学生能够利用多媒体信息平台下的丰富教学资源,如通过图形的特征曲线表示,曲线的特点等进行课堂展示,使得学生对他们的实际图形有大体的了解,方便解题.总之,随着素质教育逐步发展和普及,授课方式的转变逐渐从小学生开始抓起.作为学校,适合本校学生发展的模式才是最好的模式,不能一味地追求学生的成绩,要看到他们综合能力的发展.现阶段信息技术的发展为数学教学模式和学习模式提供了更多的可能,尤其是在现代的多媒体信息平台的建立下,混合式学习显得更加重要.授课教师在引导学生主动参与课堂学习中的同时,更加强调的是充分利用已有的多媒体信息平台,通过丰富的多媒体学习资源,来逐步增强学生的合作学习意识.尤其是对于一些应用题型,当他们逐步掌握这种方法时,即应用数形结合来解决实际问题应用题的过程中,他们的解题思想和思路会有一个很大的提高.通过多媒体,能够将数学信息更好地展现在学生面前.
初中数学小论文范文相关
浏览量:2
下载量:0
时间:
数学课程应面向全体学生,使人人都获得最好的数学教育,保证不同学生在数学上获得不同的发展。下面是读文网小编为大家整理的初中数学论文,供大家参考。
摘要:数学概念中的定义是数学科学知识体系的基础,是中学数学基础知识的核心。数学概念定义也是数学思维的细胞,是数学能力的根基之一。由此可见,要想掌握一门学科就要掌握这门学科核心的、根本的概念。因此,教师应对数学概念教学的方法及策略进行探究,以使学生能更好地学习数学。
关键词:初中数学;概念教学;方法及策略
数学概念的定义是数学知识体系的基础,是中学数学基础知识的核心;掌握一门学科就是要掌握这门学科核心的、根本的概念。从这个意义上来看,数学教学=概念教学+命题教学+解题教学。
一、数学概念的意义、组成、特征
1.意义:数学概念一般指客观世界数量关系和空间形式方面的本质属性在人脑中的反映。数学概念是数学知识体系的基础,同时,又是数学思维的细胞,也是知识与方法的载体。2.概念的组成:概念的名称、定义、符号、例子和属性等五个方面。例如,“平行线”是概念的名称“;在同一平面内,不相交的两条直线”是概念的定义;“∥”是符号;不同位置和方向上的各组平行线可以看作正例及其变式“;两条没有公共点的直线叫做平行线”可以看做是一个反例;“平行线”的属性有:传递性、同位角相等、内错角相等、同旁内角互补等。3.概念的特征:概括性和抽象性。
二、数学概念教学的现状
现状1:重结果,轻过程。“一个定义,几项注意”。一步到位、举例训练、反复练习、迎接考试,急功近利。“概念教学=解题教学”式大容量训练;经典语言“:教概念不如多讲几道题目。”观念2:例题教学替代概念的概括过程,认为应用概念就是理解概念,不知道怎样教概念,只知道“模仿+训练”。
三.数学概念教学的方法
(一)概念形成模式的教学过程
概念形成———如果某类数学对象的关键属性主要是由学生对大量同类数学对象的不同例证进行分析、类比、猜想、联想、归纳等活动基础上,独立概括出来的,那么这种概念获得的方式就叫做概念形成。概念形成的心理过程依次是:1.感知、辨别不同事例;2.从一类相同事例中抽象出共性;3.将这种共性与记忆中的观念相联系:4.同已知的其他概念分化;5.将本质属性一般化;6.下定义。
(二)概念形成模式教学一般步骤
1.概念背景与引入(正例);2.学生分析、比较、综合不同典型例证(让学生多举例);3.从例证中概括共同本质特征得到概念本质属性;4.下定义(用多种数学语言准确表示);5.概念的辨析(举正反例,分析关键词,考查特例);6.概念的应用(代表性、形成用概念作判断的操作步骤);7.形成概念系统(建立概念体系,完善认知结构)。
(三)概念同化模式的教学过程
1.概念的同化———新的数学概念在已有概念的基础上添加其他新的特征性质而形成,这时学生利用自己认知结构中已有的相关知识对新概念进行加工、改造,从而理解新概念的意义,这种获得概念的方式就叫做概念的同化。2.类型:新概念与旧概念之间具有下位关系和不具有下位关系两种情况。(1)新概念与旧概念之间不具有下位关系用定义直接陈述概念———举例说明或解释———认识新概念的意义———领会新概念的本质属性。(2)新概念与旧概念之间具有下位关系概念教学一般流程:①呈现先行组织者;②下定义(属+种差);③概念的辨析(举正、反例,分析关键词,考查特例);④概念的应用(代表性、形成用概念作判断的操作步骤);⑤形成概念系统(建立概念体系,完善认知结构)。
四、概念教学的策略
策略1:实施“组块化”教学所谓组块是指在记忆中把若干较小的单位组合成熟悉的较大单位的信息加工过程。案例:在求一元二次不等式ax2+bx+c>0的解集时,通常首先要分a>0和a<0两种情况分别讨论,然后再对判别式△=b2-4ac分△>0、△=0、△<0三种情况进行讨论,前后一共有六种情况。策略2:整体感悟,主动建构知识与方法奥苏贝尔的有意义学习理论。学习原则:“渐进分化”和“综合贯通”。
(一)“从整体背景到局部知识”的结构教学
案例:函数的概念教学活动1:初步感受生活中两个变量的关系1.一个变化过程;2.两个变量;3.一种对应,即一个量随另一个量的变化而变化。
(二)从思维策略到具体方法的结构教学
章建跃认为数学教学要把“认识数学对象的基本套路”作为核心目标之一,即通过学习,让学生掌握研究、解决这一类问题的基本思维路径和基本操作方法。
(三)从上位概念到下位概念的结构教学
新的概念从属于学生数学认知结构中已有的、包容范围较广的知识时,则构成下位关系,原有的概念叫做上位概念,新的概念叫做下位概念。策略3:系统梳理,揭示知识的联系与规律从系统的角度学习知识,置知识于系统中,着眼于知识之间的联系和规律,从而深入本质,因为联系和规律就是本质,着眼于数学思想的渗透。教师可从三方面概括概念体系:1.建立概念网络,概念图或思维导图;2.明示概念之间的关系;3.揭示蕴含在这个概念体系中的数学思想方法。策略4:运用“长程两段式”教学策略“长程两段”教学策略,就是在整个单元的知识结构、特有的育人价值思考与开发的基础上,将每一个结构单元的教学过程分为“教学结构”和“运用结构”两大阶段。“教学结构”阶段。主要采用发现的方法,让学生从现实的问题出发,在问题解决的过程中发现和建构知识,充分地感悟和体验知识之间的内在关联的结构存在,逐步形成学习的方法结构。“运用结构”阶段。主要让学生运用学习的方法与步骤结构,主动学习和拓展掌握与结构类似的相关知识。
总之,中学数学概念定义的教学,要从实际出发,精心设计、认真对待;采取不同的方法,引导学生观察、分析、比较、抽象,揭示对象的本质属性,适时地引入新概念,为学习新的知识打下坚实的基础。
参考文献:
[1]徐燕.对初中数学函数教学方法和策略的探讨[J].数学学习与研究,2011(22).
[2]朱家芳.初中数学概念教学方法分析[J].中学时代,2012(8).
[3]李平.新课程背景下初中数学概念教学之策略[J].数学大世界:教师适用,2010(10).
[4]周华.浅谈初中数学概念的教学方法[J].中国科教创新导刊,2009(24).
摘要:新时期,随着社会的高速发展,教育改革的不断深入,越来越多的人们开始重视初中阶段数学学科的教育教学。教学目标明确指出“初中数学教学过程应有助于发挥学生学习的主观能动性,突出学生主体的实际活动,使学生的学习成为在教师引导下的再创造过程。”为此,作为新时期的数学教育工作者,我们要充分认识自己的使命,不断提高自身能力,构建优质的教学课堂。
关键词:初中数学;教育教学;优质课堂;氛围;方法;小组合作
初中数学新课程尊崇“以学生发展为本”的教育理念,倡导构建以学生为主体的初中数学高效课堂。为此,作为初中数学教师应从数学学科教学内容和学生年龄心理特点出发,,通过一系列教学方法的合理指导,激发学生的学习激情,激励学生创新性思维的发展,在学生学习主体性的充分发挥中实现初中数学高效课堂。
1充分认识优质课堂构建的基本原则
随着目前不断深入的新课程改革标准,对初中数学教学的教学质量提出了更多符合时代发展需要的要求,要求在原来的基础上加强对学生的数学思维的培养,增强学生对数学的实际应用能力,提高数学理论对学生的价值观的正面引导。那么何为优质教学课堂,如何构建优质课堂,优质课堂构建的基本原则有哪些呢?首先应该是全面发展原则。在现有的教育体制下,很多学校在教学过程中只注重学生的分数,而忽略了素质教育的教学目标。构建初中数学高效课堂不仅提高学生掌握初中数学理论知识的效率,而且应当更加注重对学生综合素质的培养。在对学生进行智力培养时,老师不能仅仅培养学生的理论分析能力和逻辑思维能力,而忽视了对学生实践能力的培养,要努力提高学生的综合素质。低耗能原则。初中课堂每堂课几十分钟,教学时间是相当有限的,由于初中学生学习的课程较多,因而学生的学习精力也是有限的,构建初中数学高效课堂的一个重要原则就是在保证学习质量的前提下,最大程度的降低学生在数学这门课上花费的精力,也就是低耗能原则。与此同时,还应该包括师生共同进步原则。一提到构建初中数学高效课堂,大家首先想到的就是学生学习数学效率的提高。但是构建初中数学高效课堂还应该包括提高初中数学老师的教学能力和教学质量。数学老师的成长是实现数学高效课堂的重要保证。学生作为数学教学课堂的主体,受到教学的主导者,也就是数学老师的引导。构建初中数学高效课堂要让学生在老师的引导下更加积极,也促使老师在实现高效教学的同时不断提高自身的教学能力。为此,作为新时期的教育工作者,要明确这几点基本原则,并且合理的遵守,从而构建优质教学课堂。
2构建优质教学课堂的途径
优质教学课堂概念的提出是对新课改精神的深入贯彻落实过程。初中教育要结合自身实际对于如何实施高效课堂建设进行深入研究。经过多年的教学,笔者总结了一些经验,认为构建优质教学课堂,首先应该通过开发教学情感因素构建愉悦、轻松的课堂氛围。心理学家曾经做过这样一种研究,学生在欢快和谐的教学环境中学习,其记忆力是平时的三到五倍。学生是有血有肉的感情个体,课堂教学是师生情感的交流过程,关注学生的情感需求,开发教学情感因素,能够使学习过程充满情致和韵味,学生怀揣积极态度、畅快心情和活跃思维,情感体验得以强化,此外愉悦、轻松的课堂氛围也能使学生兴奋而快乐地学习数学。所以,教师要把“以情促知、以知增情、情知交融”作为教学境界的理想追求,尊重学生的心理与个性,在亲切、幽默的教学语言交流中建立起和谐的师生关系。同时,我们还可以用与教学内容有关联的故事渲染课堂气氛,调节课堂节奏,让课堂高潮迭起。其次,教学方法的合理指导,促使学生学习能力提高。学贵得法,正确的学习方法能提高学生的学习效率。教师最大的任务不是向学生传授知识,而是教会学生学习,让学生能够利用正确的方法去自主学习、主动求知。教师要在教学中渗透学法指导,通过讲解知识点、例题、总结解题思路和技巧,让学生掌握初中数学的学习方法和技巧,懂得从阅读课本、学习基础知识做起,并遵循向“最近发展区”理论,实行递进式学习和发展,保证思维发展的连贯性和螺旋式上升。教师还要引导学生懂得借助外力解决学习上的困难,比如,老师、同学、工具书等,做到善假于物发展自我。有了学习方法这个武器,学生就能沿着正确的方向学习、思考,不至于游离于课堂学习活动之外,或偏离学习的主方向。这样,课堂的效率才能得以保证。最后,积极地创建立合作制度,成立兴趣小组。古语说得好:一个好汉三个帮,三个臭皮匠赛过诸葛亮,充分告诉我们合作的重要性。目前,我国的基础教育仍然达不到小班教学的标准。长期以来困扰初中数学教师的一个难点问题就是无法实施小班教育,对数学较弱的学生无法进行单独辅导。数学兴趣小组的建立建议有效改善这种问题。老师在课堂上以让能够按照进度完成教学目标。课后,给学生留下充足的时间,由数学学习的优等生来帮助其余的学生提高数学成绩。这既增强了数学优等生对所学知识的进一步理解和消化,同时也帮助了成绩较差的学生。最后,这种兴趣小组的成立对于培养学生之间建立深厚的友谊,培养和谐融洽的班级关系也有重要的意义。可以说数学情趣小组的成立,不但为高效课堂建设作了贡献,更是一举多得的大好措施。其实,构建高效数学课堂教学方法还有很多很多,这就需要我们教师在往后的工作中,认真的学习,交流,共同发展。总而言之,新时期,对于初中阶段数学学科的教育教学。作为教师的我们要引起足够的重视。在教学过程中,通过充分认识优质课堂构建的原则;并在教学过程中营造良好教学环境;教学方法合理指导;以及小组合作教学的开展,从而真正的提高初中阶段数学学科教学效果。
浏览量:2
下载量:0
时间:
初中数学是初中教学课程的重要组成部分,但是初中数学也是初中所学内容中的难点内容。下面是读文网小编为大家整理的初中数学教学论文,供大家参考。
摘要:初中数学是一门强调思维逻辑紧密性的学科.传统的初中数学教学模式过于枯燥、乏味,学生的兴趣无法提升,可能使学生产生厌学情绪,所以变革教学模式势在必行.本文以趣味教学为研究对象,就其在初中数学教学中的渗透进行探究.
关键词:初中数学教学 渗透 趣味教学
随着我国教育事业迅猛发展和教育研究的深入,当前教育对初中数学教学的模式和方法提出了越来越高的要求.而趣味教学方法则是当前教学中一种新型的教学方法,它可以以趣味性的内容和形式来活跃数学教学氛围,使学生在良好的课堂氛围中快乐学习,从而激发学生学习数学知识的兴趣,提升课堂教学效率.
一、以故事导入新课,调动学习热情
“好的开始是成功的一半”.课前教学内容导入的质量直接决定着初中数学教学质量,所以在趣味教学法的指导下,教师必须要采用有效的方法和手段开展课堂教学.初中生大都喜欢听故事、讲故事,教师可以在课前为学生讲解一些与教学内容相关的趣味故事,使学生的注意力被充分吸引,再导入教学新内容,以使学生在愉悦的教学氛围中充分了解和掌握趣味故事中所蕴涵的丰富教学知识,进而有助于提升数学课堂教学质量.另外,当前网络上的教学信息和资源比较多,教师可以在课下借助网络搜集一些与数学知识相关的趣味数学故事让学生学习.例如,在讲“勾股定理”时,教师可以借助讲故事的方式调动学生学习数学知识的积极性和热情.“在古希腊时期,有一位数学家毕达哥拉斯去他朋友家里面聚餐吃饭,但是在吃饭过程中其他人都大谈特谈,而仅有他一个人沉默不语好像在思考什么,男主人对他的行为非常好奇,就问他到底在想什么事情,可还没等男主人问出口,毕达哥拉斯却自己离席了,让人们很难理解.”在讲到这里的时候,学生的注意力会被教师的讲解所吸引.这时教师需要继续问:“同学们,你们知道毕达哥拉斯突然离席的原因吗?”学生会异口同声地回答:“不知道!”此时,教师因势利导地问:“事实上,毕达哥达斯在当时一直在观察男主人家的地板,并且在观察的时候发现了一个重要的数学定律,你们知道是什么吗?”这时候学生依旧回答不知道.虽然学生两次回答都是不知道,但是故事的讲解已经充分调动了学生的积极性和兴趣,接着教师可以告诉学生:“事实上,毕达哥拉斯那次在宴会上所得到的数学规律实际上就是勾股定理.”这样一来,学生会对勾股定理知识产生极大的学习兴趣,有利于教学活动的开展.
二、灵活运用多媒体,激发学习兴趣
随着教育研究的深入,多媒体技术已经逐渐成为教学中的常用手段.多媒体技术可以为学生营造一个图文并茂、声像并举、生动形象直观的教学情境,有利于激发学生对教学内容的兴趣,调动学生的感官功能,充分拓展学生的思维.另外,在初中数学教学中应用多媒体,可以将抽象、复杂的数学知识变得生动、形象直观,化静态的数学问题为动态的问题,从而打破了传统数学课堂所具有的枯燥、乏味特征,有利于提升数学课堂教学效果,同时可以培养学生的数学理解能力,有利于学生后续的学习.例如,在讲“二次函数的图象与性质”时,由于二次函数的图象为抛物线形状,单纯地采用“板书+口述”的教学形式无法使学生理解“平滑”这一函数图象概念,并且学生也无法精确地绘画.如果教师借助多媒体将二次函数的图象从孤立的点到连续曲线的形成过程以动态的变化形式展示出来,能使学生直观地观察二次函数图象,有利于学生对于函数知识的理解和认识.
三、巧用活动教学,增强学习趣味
在当前的初中数学教学中,课堂教学氛围比较僵化、呆板,教师采用的“板书+口述”的教学方式无法将抽象的数学知识清晰地传递给学生,所以学生的学习积极性不高,无法主动地投入到数学知识的学习中.鉴于初中生大都比较爱好活动,教师可以为学生组织一些教学活动来增强学习的趣味性.例如,在讲“二元一次方程”时,应用题是凸显各种关系的重要手段,为了深化学生对于该部分知识的理解和认识,可以采用小组竞赛活动的方式使学生分成适当的小组,接着由教师提问,各小组抢答的方式来进行,最后就各小组的答对题目数进行统计,比一比谁回答的最多,使学生在趣味性数学活动中提高学习能力.总之,趣味教学是课程改革和素质教育在初中数学教学中的具体体现,可以有效地激发学生学习数学知识的兴趣,调动学生学习的热情和积极性,并且可以使学生在轻松、愉悦,包含趣味性的课堂中快乐学习,从而提升课堂教学效率。
摘要:提高课堂教学效率,是增强初中数学教学效果的最佳选择。本文从设置教学情境,选择合适习题,增强师生交流等三个方面提出了构建高效课堂的方法。
关键词:高效课堂;初中数学
在现阶段的初中数学教学中,很多老师都认为要想提高学生的初中数学学业水平和初中生的数学素养,就必须在课堂内尽可能高效率地完成自己的教学任务和教学目标,而构建起高效课堂就是实现这一目标的最佳途径,也是最有效的途径。所谓的高效课堂是指教师在课堂上能较好地完成自己的教学目标和教学任务,并且取得很好的教学效果。作为一名初中数学教师,笔者也十分重视高效课堂在初中数学教学中的价值,因此努力打磨自己的教学技巧,力争使自己的数学课能成为真正意义上的高效课堂。经过多年的摸索和实践,笔者认为教师要想将自己的课堂打造成高效课堂,可以从设置合适的教学情境、精选适合学生发展水平的习题和增加师生间交流等方面着手,提高自己的教学效率,实现高效教学,进而达到构建高效课堂的目的。
1设置合适的教学情境
很多教师并不重视教学情境的设置,认为在初中数学教学中是否设置情景对教学并没有太大的影响,因此他们在初中数学课堂上都是直接切入本节课的主题。如果教师在上课之前能够精心挑选并主动引入契合本节课教学重难点的教学情境,对吸引学生注意力和帮助学生突破难点有很大的促进作用。所以,设置合适的教学情境对教师能否高效率的完成教学任务和教学目标具有非常大的意义,是能否构建高效课堂的基础之一。例如在教授《负数》新授课的时候,笔者就对如何能够吸引学生的注意力和如何帮助学生快速而有效地理解负数的本质进行反复思考,最后在集体备课的时候和几位教师一起设计了一个比较切合学生日常生活的教学情境,这个问题情景由两个问题组成。在上课之前笔者就对学生进行描述:今天早晨老师出门的时候带了十元钱,可是在来学校的路上老师捡到了负十元钱,请问现在老师身上有多少钱。学生在听到问题之后稍微有点惊讶,但是很快就反应过来,纷纷回答老师是不是身上一分钱都没有了。这说明学生在经过课前预习之后,已经知道捡到了负十元就是丢掉了十元钱,同时在教师的问题引导下进入本节课的学习情境,由于这个问题比较契合日常生活,所以很容易就让学生进入本节课的学习情境,进而从问题情境中明白负数的含义和运算原则之一,加负数就等于减去正数。随后笔者在PPT上展示一个汽车运动的动画,汽车向前跑了五十米,笔者对学生说:大家思考一下,这辆汽车向后跑了多少米?学生经过刚才的问题情景提示,已经知道负数的相关知识,再顺着教师的思路思考一会之后就知道,负数不仅可以表示数量上的增减,还可以表示正方向和反方向。最后得到的答案就是汽车向后跑了负五十米。在经过这个教学情境的导入之后,学生在这节课上的学习心理得到了较好地引导,并且在不知不觉中就完成了对负数学习的心理准备,使笔者高效率地完成了这节课的教学目标和教学任务。
2精选适合学生发展水平的习题
在完成新授课例题讲解之后,教师一般都要给学生提供一定数量的习题,帮助学生巩固新学到的知识点,而数学尤其是如此,学生在学习新知识之后,可以通过练习学会对新知识的应用,并进一步加深对知识点的理解,因此数学课上的训练就显得十分重要。要想通过练习加深学生对知识点的理解和教会学生运用知识点解决实际问题,进一步达到构建高效课堂的的目的,教师就应该在提高练习的质量上下功夫。例如,在讲授《一元二次方程解法》的新授课时,在完成因式分解法的例题讲解之后,笔者给学生留下了几个习题,让他们当场完成并上黑板展示各自的解法和思路。(1)(2x-1)2+3(1-2x)=0(2)(1-3x)2=16(2x+3)2(3)(x2-6x)-7=0这几道题目并不是很难,但是却集中体现了因式分解法解一元二次方程的基础方法和思路,比如换元法、展开之后再进行因式分解和直接分解法。这些习题还对学生以前学习的公式进行复习,不仅可以检查学生对新知识的掌握情况,还能提高学生对旧知识的运用能力,因此,可以通过这些习题较为全面地评估学生本节课对新知识的学习情况。教师要想通过习题强化学生的学习效果,就要精心设计一些注重基础知识应用的习题。一般来说,学生在新授课上掌握本节内容的基础知识并能够解决实际问题就是很好地完成本本节课的教学任务,可以认为是较好的完成教学目标和教学任务。
3增强师生之间的交流
师生之间的交流在构建高效课堂方面有着十分重要的意义。如果教师只在课堂上讲授新知识和练习题,而忽视对学生学习情况的掌握,那就会对学生的学习情况知之甚少,无法针对学生的学习情况调整自己的教学方式,也就谈不上构建高效课堂。所以,教师要想构建高效课堂就必须加强和学生的交流,掌握学生的学习情况,及时对学生掌握不牢固的知识点进行补充,实现高效课堂的构建。例如在课堂上,为了能够及时掌握学生的学习情况和学习效果,笔者经常通过检查学生随堂练习完成情况以了解学生对新知识的掌握情况。因为学生的知识储备和理解能力的差别,所以学习效果也不尽相同,对教师讲述的新知识理解程度就有所差别,同一节课下来,学习能力强的学生可能已经在掌握新知识的基础上扩展了新的能力,学习能力一般的学生可能是仅仅完成新知识的学习和巩固,而学习能力较差的学生甚至肯还不能灵活运用这些知识。教师仅仅通过提问是无法完全掌握学生的学习情况的,所以,只有通过适当的练习,让学生展示自己的解题思路,才能充分地完成师生之间的交流,让教师真正掌握学生的学习情况,发现问题进而解决问题。
4结语
构建高效课堂是每个教师的目标,也是帮助教师完成教学任务、提高教学水平的必由之路。不同的教师有不同的思路和方法,笔者根据自己的教学实践,从设置合适的教学情境、精选适合学生发展水平的习题和增加师生间交流等方面着手,构建初中数学教学的高效课堂。
参考文献:
[1]张忠年.打造高效课堂,教师该怎样定位[J].学周刊,2014(13).
[2]张玉霞.浅谈新课标下高效课堂的构建[J].吉林教育,2011(16).
摘要:众所周知,初中数学在整个的数学体系中占据着举足轻重的地位,它不仅是小学数学的终点,而且是高中数学的起点。因此,随着社会的不断发展,在要求学生掌握好书本的理论知识之外,还需要提高学生发现问题、分析问题以及解决问题的综合能力,最终实现以创新思维方式解决数学问题,并培养学生创新能力的教学目标。
关键词:初中数学;创新思维;教学方法
培养创新意识、创新精神是当今时代对教育提出的新的要求,新的挑战,建立"创新"教学课程模式,对于全面实施创新教育,培养创新型的人才,养成别具一格的创新思维方法是非常重要的途径之一。
1.开放数学课堂,解放学生思维
要实现创新教学的目标,笔者认为,首先就要开放课堂。作为老师,一定要尊重和爱护每个学生,公平对待,努力营造一种轻松、自由、民主、求真的课堂氛围,消除学生的紧张情绪。其次,教师应该要明白开放课堂的目的就在于解开束缚学生思维的枷锁,最大限度激发学生的创新潜能。所以,教师一定不能忽视学生自主学习发展的愿望,促使教学过程向学生发现创造过程的转变;与此同时,教师还应将传统"以教师为中心"的课堂教学模式转变成为"以学生为中心",发挥学生在课堂学习中的主体地位,而教师则作为一个引导者,鼓励学生积极参与到教学活动中来,使其通过自身的学习体验来感悟出知识的发生、发展过程,进而达到启迪学生创新思维,提高学生数学修养的目的。
2.引趣导入,创设情境。激发兴趣
一堂课开端的新、奇、趣导入,就能吸引学生,激发学生的学习热情,打开学生的思维的闸门,使学生积极投入到最佳的学习状态,为探究新知识做好充分的心理准备。在课堂教学中教师应充分利用教材的思想内容和各种教学手段,如启迪法、思维法、谜语法、游戏法、故事法、表演法等紧紧联系学生熟悉的科技、军事、生产、生活中实际创设愉快的、有伏笔、有问题的教学情境,触动学生的兴奋点,使学生被一种轻松愉悦和谐气氛所感染,受到渴求新知的动力驱使,从而唤起学生的学习兴趣。当然,导入一定要有针对性和目的性,不能片面追求奇、趣而离题甚远,要犹如静水投石,新课伊始就在学生中迅速产生思维的涟漪.由趣生疑,紧扣一堂课的主题。
3.巧设"疑云",激起焦虑
古人云:"学起于思,思源于疑。""疑"是探究的源头。学贵有疑.疑能引起学生的认知冲突,使其产生强烈的探究心理反射。如教解直角三角形一节时,设问:地质工作者是怎样测量一座大山高度的?打隧道的工人是怎样从大山两面动工把隧道在预定地点接通而不会打偏呢?这些实际问题的提出会大大提升学生对新知识的渴望。这时教师要抓住学生心中的疑团,做恰如其分地点拨引导,充分激发学生的好奇心理.使其对心中的疑惑产生一种欲休不止、欲罢不能的探究愿望。教师要注意的是"引"一定要画龙点睛,足以激发学生的探究欲望,促使他们保持持久的学习热情。
4.探究新知,培养创新才能
人生来是有一种探究本能的,而且初中生的内心蕴藏着无限潜能,只要教师在课堂上创设有利于开发学生创造思维的条件,学生就能去探索知识,创造知识,不达目的誓不罢休,直到真正地发现新知,亲自体验到成功的喜悦。但要注意的是,当学生专心致志投入探究活动时,教师要适时地点拨,给予指导,充分发挥教师的导向作用,防止漫无目的、不着边际的探索。同时,教师的提问,要多让学生讲出探究过程,少说答案结果,让学生在练习中获取才能,在练习中使学生的主体性得以充分体现;探究创新是一种复杂的脑力活动,只有在轻松、自然、安静的氛围中,人们才会产生好奇心,萌发求知欲,才会有创新的意识和行动。所以,要使学生做出创新成绩,就心须为学生创造一种宽松、和谐的有利于创新的环境,使他们自由地发表意见,能按自己的方式学习和活动,这就要求教师必须充分的相信每个学生都有创造才能,要尊重学生,多用鼓励奖赏的办法,少用甚至不用指责的手段,对学生的创造性表现,哪怕是极其微小的.也要大加赞赏。即使有些失误,也要热忱鼓励。只有这样,学生才敢于创新,才会产生创新见解,达到成功的彼岸。
5.运用多种教学方法提高学生创新能力
思想上,教师要努力开发学生的情感智力,培养创新个性。据笔者了解,数学是很多中学生感到头疼的科目,尤其是对于那些逻辑思维能力较弱的女生而言,常常因为数学成绩的落后而形成极大的自卑感和挫败感,如此恶性循环,严重影响了学生的健康成长。所以,教师在开展数学教学工作时,也要注重培养学生坚忍不拔,遇到困难永不退缩的顽强意志以及敢于打破常规、开拓创新的魄力等等,保证学生能够有足够的心理准备去迎接各种挑战;实践上,加强学生动手操作能力的锻炼。毫无疑问,单靠理论知识的学习是无法培养学生的数学创新能力的,因此,在学习数学书本知识的同时,教师还应该通过借助一定的实践活动来充实课堂,提高教学效率。例如,可以对学生进行合理的分组,布置学习任务,要求他们在实际的操作中找出相对应的数学规律,总结方法,在使创造思维更加具体化和可视化的同时,让学生体验到创新的喜悦,进而提升创新水平;此外,加强学生观察能力的培养。创新往往来源于细节,要想强化学生的数学创新能力,就必须教会学生如何观察事物,最大程度的发挥老师的指导和调控作用。促使学生养成细心观察周边事物,并用数学理论进行解释的良好习惯,从"学会"转变为"会学",增强学生数学思维的创造性。
6.反馈落实.交流总结
当充满挑战、竞争的探索过程结束后,每个学生对自己的探索过程肯定有着酸、甜、苦、辣的感受。有些学生得到了探求结果,而有些同学虽也经过努力探索。但走了弯路,得不到结果,这时得到结果的同学很想在同伴和老师面前展示自己,同时也很想得知其他同学的探求方法,而得不到结果的同学更想知道正确的探索途径,这时,教师就让学生在组内、班内交流自己的探究所得,因为交流可使一个人茅塞顿开,心襟豁然开朗,不失为学习中的一种好方法。常常交流,可使自己少走弯路,也可使所得有所升华,在交流中,因为有亲身体验,同学们都能畅所欲言,课堂气氛民主、融洽,学生思维活跃,能将知识来龙去脉弄得一清二楚。通过交流还会发现,同伴们探究知识的途径各自不同,有的便捷,有的繁冗,其中不乏种种创新。但只要稍作比较总结,便可以从中发现最快捷、最简便的方法。这样就达到互相学习、共同进步的目的。
7.借助多媒体教学,激发学生创新兴趣
随着时代的发展,科学技术日新月异,越来越多的多媒体技术被应用到课堂教学之中,它也凭借对课本、图像、图形、动态以及声音等等的综合处理能力而备受师生欢迎。所以,笔者认为,在课堂教学中,我们应该适当的导入多媒体课件来刺激学生的多种器官,让传统枯燥无味的教学内容更加的趣味化,但又不失真实化,最大限度的调动学生学习数学的积极性。
总之,优化课堂教学就要从远处着眼,近处着手,把创新意识具体落实到课堂教学中的每一个环节来培养,持之以恒,从而达到培养学生创新意识和初步的创新能力,提高学生的整体素质的目的。
浏览量:2
下载量:0
时间:
初中数学教育是小学数学教育的进一步延伸,同时也是连接高中数学教学的基础,因此在学生整个学习过程中有着重要作用及意义。下面是读文网小编为大家整理的初中数学教育论文,供大家参考。
一、自主学习,培养学生的独立思考能力
要想培养学生独立思考的能力,就要从日常的学习生活中锻炼,从平常的课堂和课外作业中对学生严格要求,必须独立完成个人作业。滴水才能穿石,学生独立思考能力的培养不是一天就可以实现的,而是潜移默化的变化,所以,只有学生在日常生活中时刻注意并且能够逐渐养成能独立思考的好习惯,才能在今后的学习生活中有独立的创新意识。随着网络的发展和普及,现在的大多数学生看到开放性的问题,首先想到的就是上网,明显缺乏独立思考的意识,但是这种行为阻碍了老师对学生独立思考能力的培养。一个班级里经常会出现全班作业几乎完全相同的现象,这种现象出现的主要原因就是学生之间的互相抄袭,“一个人完成,全班无忧”。而教师批改作业所体现的问题也就只是那几个独自完成作业的学生所体现出来的问题,不仅对教学质量有非常严重的影响,而且更不利于学生独立思考习惯的养成。所以,保证学生日常作业能够自主独立地完成,是提高数学成绩以及培养独立思考能力的必要条件。所以,作为教师一定要杜绝学生这种抄袭的行为,让学生真正用心地去做每一道题,从平常养成独立思考的好习惯。
二、锻炼学生的创新意识和思维能力
创新思维在初中的学习中尤为重要,尤其是在数学学习中。所以,我国才大力倡导教育改革,提倡“素质教育”,努力培养学生的创新意识和独立思考能力,比如,做题时不能生搬硬套,要学会灵活应变。数学题目知识量大,综合性高,同时受教育改革的影响,近年来的一些考题当中表现学生创新能力的题目越来越集中,所以,锻炼学生的创新意识和独立思考能力应该被重视起来。同样的题目,有的学生就只会套用公式,而具体该怎么做却并不太明白,有的学生利用所学知识,结合题意,经过思考得出答案,而不是仅靠公式解决问题,简便容易理解,真正做到学以致用。教育改革的目标就是培养学生的创新能力,今后的工作学习中更是需要这样的创新能力,只有这样才是最科学有效的。
三、互动交流,拉近师生关系
师生沟通在初中数学的教育中发挥着非常独特的作用,通过相互沟通和真诚交流,既可以增进师生之间的感情又可以探讨学习中的问题。只有进一步了解学生思想,剖析他们解决问题的方法,并加以引导学生自主独立地思考问题,用创新思维想办法。师生沟通可以利用课间时间也可以放在自习时间,教师可以询问学生的日常生活问题,有问题就及时想办法帮忙解决,拉近师生之间的关系,才能使学生在学习当中出现问题时也能提出来,从而教师才能寻找机会,启发学生动脑,独立地思考问题。师生之间的沟通是培养学生独立思考能力的桥梁,是师生共同进步的先决条件。
四、结语
总之,教育教育改革就需要在将教学与实践紧密结合,只有经过实践才能把教育工作落到实处,才能真正做到以学生为主,科学高效地进行课堂教学,引导学生逐渐走上向学、爱学和会学的道路,成为一个合格的教师。
一、目前信息技术与初中数学教学整合现状和存在的问题
1.教学认知受传统观念制约
在以教材为主的传统观念的影响下,教师采用黑板和粉笔的授课形式已经根深蒂固,在这种环境下,讲课以集体教学为目的,难以顾及到每一个学生。而信息技术与数学教学整合则是强调“以学生为中心”的模式,这个过程中,采用全新的教学方式和学习方式,并加强课堂上师生之间的沟通交流,促进学生自主学习能力,调动学生的主动性和创造性,真正地实现学以致用。
2.多媒体教学环境落后
由于学校经费有限,政府和教育监管部门在多媒体教学投入上拨出较少,因此许多学校都无法配备先进的多媒体教学仪器。基础设施有限,这对于学校响应加大信息技术整合力度的号召就犹如“纸上谈兵”,不能起到应有的效应。
3.教师信息技术操作水平有限
初中数学教师往往专注于本学科的研究,对于信息技术的操作还欠缺了解。在一些课件制作和使用过程中,多样的数学符号、烦琐的数学运算的输入都会给数学教师造成一定的困扰。在课堂如何熟练使用操作平台和解决计算机系统问题等方面还受到一定程度的限制。
4.信息技术与数学教学实践脱轨
信息技术整合下的教学模式强调的是学生学习的主动性,而在许多初中学校,教师在课堂上仍然沿用传统的讲授模式,将多媒体教学作为辅助教学工具,忽略其真正的价值。数学教学与其他课程相比具有逻辑性强的特点,学生需要正确掌握逻辑技巧。信息技术可以将算法融汇到教学课程的各个部分,使学生可以按照自己的学习进度循序渐进,融会贯通。
二、实现信息技术与初中数学教学整合的有效措施
1.加强数学课堂信息技术运用和课程管理
学校机关和领导应当重视课堂信息技术的运用,在教学信息化推广的过程中,制定实施计划,定期监督工作进程,专人负责项目。信息技术也区别于普通课程,因此在管理上要制定相应的管理制度,具体化课程设计内容、活动等,与国家新课改密切联系。
2.加大数学课堂信息技术基础设施投入
教育主管部门和学校应当加大对课堂信息化推广的资金投入和人才投入。加强初中学校多媒体硬件建设,在教室配备投影仪和计算机,方便教师随时使用,学校配备专业多媒体教学计算机室,使学生能够方便使用计算机,通过计算机对话,实施个别化学习。在硬件设备的基础上,注重数学教育资源的开发、传播、使用及教育管理。学校组织教师进行信息技术知识和技术的培训,提高教师信息技术操作平台的操作水平,充分利用互联网资源捕捉富有时代性的教学资源,丰富课堂内容,提高学校信息化课程的软实力。
3.构建完善的信息技术与数学教学整合体系
课堂是教师和学生的整体,因此教学整合的核心是师生之间的整合。教师与教师之间、教师与学生之间、学生和学生之间加强沟通,强调相互合作,充分发挥信息技术共享性的特点。教师采用多样化的教学模式,因材施教,从各个方面满足不同学生的学习需求,促进学生的个性发展。学校注重提高学生的信息技术操作水平,使学生在获取课堂知识的同时学会信息获取、信息分析和信息加工等信息能力,构建完善的信息技术与数学教学整合体系,培养学生的创新能力,培养出能适应信息时代需求的具有较强信息能力的复合型人才。
浏览量:3
下载量:0
时间:
初中数学教育是九年义务教育阶段一门重要课程,是培养学生思维能力和创造能力的重要载体,它对学生今后的发展具有奠基性。下面是读文网小编为大家整理的初中数学论文,供大家参考。
摘要:随着计算机和网络的不断发展,以多媒体为核心创造的现代教育手段不断增多,为现代教育的发展贡献了不可估计的力量。本文着重讲述现代教育手段在初中数学教育中的作用,分析了在初中数学教育中运用现代教育手段的方式和方法,希望对初中数学教育起到较好的推动作用。
关键词:现代教育技术 初中数学教学 数学建模 数学思维
现代教育手段可以高度改善现有的教育模式,教师可以充分利用互联网,一方面可以获得更多的教学资源,另一方面可以使教学方式多样化,不管是多媒体演示,还是互联网远程交流,都可以具体直观地展现知识点,让学生可以更深刻地了解数学知识。还可以利用计算机创建数学模型,让学生更直观地观察数据变化对数学的影响。通过这种方式,不仅可以使数学知识更容易被学生接受,使数学课堂教学质量得到提高,更能够激发学生学习兴趣,促进学生学习质量和效率的提高。
1.现代教育技术对于初中数学教学的意义
运用现代教育技术辅助教学是提高初中数学教育水平的必然要求。由于小学到初中知识内容的巨大转变,很多学生不能够很好适应,觉得初中数学非常难,从而引发恐惧心态,产生对数学的厌学情绪。再加上初中数学庞大的知识量和知识点的抽象性,为学生的正常学习产生了巨大阻力。这一系列的原因就要求必须改革初中数学的教学方式,运用先进的现代教育技术为学生创设科学有趣的教学情境,通过生动形象的教学演示帮助学生理解数学的奥妙,为学生直观具体地展示抽象化的数学知识,让学生产生探究数学的渴望,提高学生的学习热情,帮助学生树立数学模型观,增强学生学习、解决数学问题的能力。这样可以使学生充分理解教师所教的内容,提高学习效率,从而提高教学质量。另外,现代教育技术在初中数学教学过程中施行,将有利于学生树立敏锐的数学意识,帮助学生提高在生活中运用数学的能力,同时对教师的提高作用也是不可忽视,在不断分析和改进中,教师将更深入地了解现代教育技术的运用,从而提高教师的教学素质。
2.现代教育技术在初中数学教学中的应用
2.1运用现代教育技术进行课堂教学
数学教学包括教师传授数学知识,学生学习和运用数学知识两个方面。我们必须从传达和吸收这两方面着重进行现代教育技术的运用。首先,教师在讲授新的数学知识点时,要充分利用多种方式创设良好的教学情境,并通过多媒体演示让学生深入理解知识点的内容。教师要想办法利用多种方式消除学生学习数学的枯燥意识,让学生对学习充满热情。这样才可以使学生更主动地深入学习,从而增强学生发现问题、解决问题的能力。其次,教师必须重视学生对数学知识的吸收程度。教师应该在教学过程中利用现代教育技术,对学生学习的知识进行有效整合,通过各种现代教育手段帮助学生构建正确合理的知识网络,加强学生对数学知识的整体把握,从而促进学生数学思维的发展。
2.2运用现代教育技术帮助学生复习
很多学生不重视数学知识的复习,即使在复习课上也不能够做到认真听讲,因为他们认为复习课上讲的都是自己学过的内容,没有必要十分认真地学。这个时候教师的教学任务就会变得很繁重,同时也是考验教师能力的时候。教师能否科学合理地运用多种现代教育技术手段进行复习教学,是能否把复习课上得精彩的关键。通过现代教育技术可以让学生产生严谨的数学思维和敏锐的数学意识,所以在复习中教师应该着重锻炼学生的这两个方面。教师可以引导学生运用丰富的网络资源收集知识,并且让学生自主进行数学知识的归纳整理,帮助学生在整理数学知识的过程中完善知识体系、构建知识结构,让学生对知识的理解不局限于某个知识点,让学生建立起数学知识的整体意识。
2.3运用现代教育技术构建数学模型
数学是一门实用性非常强的学科,利用数学解决各种科学或者生活中的问题,就要根据实际情况进行数学建模。但是在现实中,我们遇到的各种问题都是比较抽象和难以理解的,如果运用数学知识解决问题,就要经过复杂的转化过程。在这里,问题的关键是怎么把抽象的实际问题转化成具体的数学问题,这对学生各方面的要求非常之高。但是通过现代教育技术手段,可以非常具体直观地展示抽象的问题,从而帮助学生解决实际问题,提高数学素养。现代教育技术能够帮助学生在解决实际数学问题的过程中建立正确的数学模型,为学生提供解决问题的资源和渠道,使学生能够迅速构建科学的数学思维,为学生学习数学提供了强有力的辅助工具,帮助初中学生学好、学精数学,所以教师应该重视现代教育技术对于数学建模的重要作用。
3.结语
运用现代教育技术进行辅助教学,不仅能让学生学到更专业、更丰富的知识,还能在教学过程中不断提高教师的教学水平,使师生双方都能获益。但是,在教学中不能盲目地将现代教育技术运用到所有的课堂教学中,要根据教学内容的实际情况,合理安排运用现代教育技术进行辅助教学。同时,现代教育技术的运用一定要符合教学的实际要求,充分认识到现代教育技术作为辅助教学的工具的事实,时刻抓住真正的关键是解决初中数学教学中的各种问题。
一、前言
教育事业的改革,使初中数学教学的重点发生变化。教师需要引导学生在课堂中进行思维锻炼,培养学生全面的数学思维。引导学生独立思考,让学生参与到课堂中,在解决问题的过程中形成逻辑思维,提升抽象思维能力,是十分重要的教学内容。新课程改革,让数学教师不得不关注学生独立思考能力的培养,也让这成为了教师教学研究的重要对象。运用正确的教学方法实施数学教学,才能提升学生独立思考的能力。
二、初中数学教学中培养学生独立思考能力的重要性
对初中学生的独立思考能力进行培养,是教师打破传统教学模式的表现,也是推动数学教育质量提高的实践。下面,我们就来对培养学生独立思考能力的重要性进行几点分析:
第一,有利于数学教学创新发展。在传统的初中数学课堂中,教师为了将课本知识在最短的时间内传递给学生,只顾着自己授课,忽视了学生的学习。在这样的课堂中,学生很少调动自己的头脑思考数学问题,也很难成为数学课堂中的主体。要培养学生的独立思考能力,教师需要将更多的课堂时间还给学生,做学生的评价者与观察者,给学生最大限度的自由。教师不再像原来一样直接给学生呈现问题与答案,让学生模仿。而是让学生动脑筋去想办法,对学生的解决方案加以评价。因此,培养学生独立思考能力的课堂教学,是符合素质教育要求的教学活动,能够促进初中数学教学事业的发展。
第二,有利于教师个人成长。要在初中数学课堂中培养学生的独立思考能力,需要教师改变自己的教学思想与方法。教师要接受学生在课堂中的主体地位,要转变师生观念,做学生的良师益友。与此同时,教师不能用灌输式的方法继续教学,而是针对教学内容与学生的反应即时更新教学手段。这些对于初中数学教师来说都是教育业务上的挑战,能够落实培养学生独立思考能力的教学实践,表明教师正在由传统型教师向创新型教师转变。
第三,有利于学生数学学习兴趣的激发。学生是否具有数学学习兴趣,直接关系着他们的课堂参与度。让学生在课堂中独立思考问题,可以保持学生思维的活跃性,让他们一直心系数学问题。学生通过自己的力量解决之前完全无法解决的问题,会明确自己的力量,找到数学学习的动力,成为数学课堂的主人。
三、初中数学教学中培养学生独立思考能力的对策
1.利用游戏活动,培养学生独立思考能力
死板的课堂活动,无法吸引学生的注意力,也不能调动学生的学习兴趣。教师是课堂活动的设计者与操控者,平衡好课堂活动的动与静,适当活跃课堂活动,让学生动起来,能够促进其独立思考能力的提高。游戏,是一种娱乐方式,更是一种趣味性的教学方法。将游戏活动与初中数学教学结合起来,有利于复杂数学问题的简化,也能够让数学问题与生活密切联系起来,促进学生独立思考能力的提高。
比如在学习《几种常见的统计图表》的时候,教师可以组织学生玩“我与别人不一样”的游戏。教师给学生提供一些数据,像全班学生的个人信息,身高、体重、三围等,让学生自己选择自己认为最好的统计图表形式制作一张信息表。之后,让学生四人一组,与他人表格不同的学生胜出,采取车轮战的方法决定胜负。胜者所用的统计图表,会是课本学习内容中的一部分。利用游戏的方法组织学生思考,展示与竞争,能够让学生尽自己所能去深入思考问题,用尽可能多的角度发现不同。将游戏与课堂活动结合起来,会让学生在快乐的氛围中实现独立思考能力的提高。
2.组织合作学习,培养学生独立思考能力
合作学习模式并不与培养学生独立思考能力的目标相冲突,在合作中,学生不只能够独立思考,还能在他人的引导下进行不同角度的独立思考。初中数学中有许多问题具有一题多解性质,一个问题对应着多种解决方法。教师引导学生以小组为单位去解决问题,调动每一位小组成员的独立思考积极性,促进他们发言,分享观点,会让独立思考行为变得更加自然。合作,能够给予学生独立思考的动力,更能让他们发现更多独立思考的空白。
比如在讲解《全等三角形》的时候,教师可以让学生就“全等三角形的判定方法”这一主题进行讨论。一些学生在独立思考时,只关注边的关系。但小组其它成员提出角这一影响因素,就会给他们的独立思考提供一个新的思路。合作学习中的独立思考更加轻松,更加多样化,有利于初中学生独立思考能力的形成。
3.利用创新引导,培养学生独立思考能力
学生创新能力形成,是其独立思考增多的必然结果。在初中数学教学中,教师可以利用创新的引导,让学生主动提出一些问题,给自己的独立思考创造前提条件。在教学时,教师用探究教学方法引导学生一起开拓课本中的知识,了解数学原理、技能与学习方法,可以带动学生思维运动,促进学生独立思考。
比如在讲解《一元一次方程》的时候,教师在引出移项法时,可以利用“4x-3=-2x+7”这样的例题,让学生帮助数字或者未知数找朋友。将未知数归为一类,放到一起,将数字归为一类放在一起。让学生思考、分类与移动的时候,他们会发现解方程的方法。
三、结语
综上所述,培养学生独立思考的能力,让学生在数学课堂中感受到自己的主体地位,才能推动学生数学学习的深入。学生具有独立思考能力,才能开展个性化的学习,通过自己的努力,让诸多个性化需求得以满足。用独立思考活动,促进学生有创造性地学习,感受数学学习的自由,扩展学生的发展空间,是落实创新数学教育的重要实践。
数学课程在整个中学教育阶段居于基础性和关键性地位,作为初中教育的基础性科目之一,学生的数学学习成绩直接影响其整体学习质量,而数学课程的教学效果又能够对学生的数学学习兴趣产生直接且深刻的影响。在新课程改革标准背景下,推动初中数学教学改革,不断提升初中数学教学质量正显示出极端重要性。
长期以来我国初中数学教学受到传统教学理念的影响,教学方法单一,教学思路落后,教学内容与实际生活脱节,造成学生的学习兴趣不高,课堂师生互动不够,数学教学效果很不理想,在很大程度上影响了学生的整体学习成绩和终身数学学习意识的形成。从改进初中数学教学现状的角度出发,探究提升初中数学课程教学有效性显得至关重要,而实现这一探索必须要始终在坚持新课程教学改革中学生主体地位的前提下进行,以促进学生的全面发展为终极指导思想。
一、提升初中数学课程教学有效性的必要性
首先,初中数学教学过程中长期以来存在着在课堂教学中以教师为主体、学生处于被动接受地位的问题,教师完全掌握课堂主动,学生的学习主体地位被全面忽视。更有甚者,初中数学教学中完全不顾学生能否接受而进行一味“填鸭式”或在中考压力下进行高压式题海战术,给学生的数学学习兴趣带来极大损害。
再者,初中数学教学改革要求更加尊重学生的学习主体地位,更为全面地发展学生的综合素质,提升学生的数学素养。这就要求必须要积极更新自身的教学理念、教学方法和教学模式,真正提升学生对于数学课堂的兴趣,从而体现并充分落实初中数学教学以学生为本的教育理念。
二、提升初中数学课程教学有效性对策
(一)创新教学理念
对于初中数学教师而言,创新教学理念首先就要求在备课阶段做到真正地精研教材、摸透学情。一方面,教师需要对教学大纲所规定的教学内容进行积极归纳、总结、分析,发挥好教材的辅助作用,通过对教材的严密分析勾勒出数学教学的线索,并以此作为备课的基础和前题,在备课过程中将教学内容融入其中。另一方面,教师必须要对于学生的情况有着充分的了解和认知,不仅要对学生的数学基础和学习能力有基本掌握,更要结合教学内容,深入了解学生的学习过程、学习兴趣和学习思路。充分尊重学生的个体差异性,在条件允许的情况下对学生进行更有针对性地教学,从而实现教师与学生、教材与教师、教材与学生的良性互动,推动数学教学中教学内容、教学过程与教学主体的互动发展。事实证明,只有在对教学内容和学生情况进行充分了解的前提下,初中数学教学才能更有针对性,更加体现科学性,从而实现有效性。
(二)重视课堂情景教学
情景教学作为一种在调动学生学习积极性、主动性、创造性方面有着良好效用的教学方法,在初中数学教学中能够而且应该发挥其更大的作用。结合初中数学新课程教学标准,课堂教学应该更加贴近生活、贴近实际,让学生更有效地在教学中得到共鸣,获取新知。对于初中数学教学过程中引入情景教学法来说,应该注意以下几个方面。首先,情景教学必须要与培养学生的自主思维能力相结合。教师创设教学情景应该充分考虑学生的接受能力,选取既能够反映教学内容又贴近学生思维基础的情景,从而加深学生对于问题的理解。其次,教师必须要考虑情景教学的实用性。实用性是初中数学教学过程中开展情景教学的基础和前提,没有实用性就没有情景教学法的开展基础,因此教师在创设情景时要更加重视教学情景趣味性和实用性相结合的原则。再次,情景教学要充分注意学生发散思维能力的培养,努力推动学生举一反三能力的提升。
(三)创新课堂教学方法
如上所述,情景教学法能够在初中数学课程教学有效性提升过程中发挥作用,而教师还需要不断创新课堂教学方法,从而进一步激发学生的学习兴趣,培养学生的学习积极性。教师需要充分实现课堂角色由主体向主导的转变,充分发挥教师作为引导者的角色,引导学生更加积极地去探索问题的解决方法。教师可以采用分层教学法,针对不同学生群体开展不同层次的教学以提升教学有效性。另一方面,教师可以采取小组学习法,以小组合作的形式开展学习活动,以此调动学生的学习积极性。
在初中数学课程教学过程中,为提升教学有效性还要针对课堂教学开展情况及时开展教学反思。这种教学反思需要对课堂教学过程和结果进行全面反思,及时总结问题,归纳经验,并且根据学生的反馈信息和反思结果对新一轮的教学改革加以深化,从而不断提升初中数学的课堂教学有效性,改进中学数学教学水平。
浏览量:4
下载量:0
时间:
数学具有广泛的应用性,其中在初中数学的教学中利用数学建模有利于提高学生学习的质量。下面是读文网小编为大家整理的初中数学建模论文,供大家参考。
数学,源于人们对生产与生活实际问题,抽象出的数量关系与空间结构发展而成的.近年来,信息技术飞速发展,推动了应用数学的发展,使数学日益渗透到社会各个领域.中考实际应用题目更贴近日常生活,具有时代性、灵活性,涉及的模型有方程、函数、不等式、统计、几何等模型.数学课程标准指出,教师在教学中应引导学生从实际背景中理清数学关系、把握变化规律,能从实际问题中建立数学模型.教师要为学生创造用数学的氛围,引导学生参与自主学习、自主探索、自主提问、自主解决,体验做数学的过程,从而提高解决实际问题的能力.
一、影响数学建模教学的成因探析
一是教师未能实现角色转换.建模教学离不开学生“做”数学的过程,因而教师在教学中要留有让学生思考、想象的空间,让他们自主选择方法.然而部分教师对学生缺乏信任,由“引导者”变为“灌输者”,将解题过程直接教给学生,影响了学生建模能力的提高.二是教师的专业素养有待提高.开展建模教学,需要教师具有一定的专业素养,能驾驭课堂教学,激发学生的兴趣,启发学生进行思考,诱发学生进行探索,但是部分教师专业素养有待提高,或认为建模就是解应用题,或重生活味轻数学味,或使讨论活动流于形式.三是学生的抽象能力较差.在建模教学中,教师须呈现生活中的实际问题,其题目长、信息量大、数据多,需要学生经历阅读提取有用的信息,但是部分学生感悟能力差,不能明析已知与未知之间的关系,影响了学生成功建模.
二、数学建模教学的有效原则
1.自主探索原则.
学生长期处于师讲、生听的教学模式,沦为被动接受知识的“容器”,难有创造的意识.在教学中,教师要为学生创设轻松愉悦的探究氛围,让学生手脑并用,在探索、交流、操作中提高解决问题的能力.
2.因材施教原则.
教师要着眼于学生原有的认知结构,要贴近学生的最近发展区,引导他们从旧知的角度思考,找出问题的解决方法。
3.可接受性原则.
数学建模内容的设计,要符合学生的年龄特点和认知能力,能让学生理解所探究的内容.若设计的问题不切实际,往往会扼杀学生的兴趣,教师要密切联系教学内容、生活实际,让学生有能力解决问题.
三、初中数学建模教学的几种模式
1.自学讨论式.
“先学后教”改变了传统教学中“师讲生听”、“师说生练”的模式,在教师的导学、导疑、导思中激发学生的学习兴趣,引发学生的积极思考,让他们在交流中思想不断碰撞,形成新观点,从而自身认知水平得到提高.教师要通过创设问题情境导学,引发学生的探究.例如,如图,在河岸L的同侧有M、N两个村庄,现拟在河岸边修一座水泵站P,要求使管道PM、PN所用的水管最短,另修一码头Q,要求码头到M、N两村的距离相等,试画出P、Q的位置.在提出问题的基础上,学生通过选点、测量,开展交流讨论.学生1认为,是不是和异侧相同?学生2认为,如果M、N在直线L的异侧,连接MN即为最短.学生3认为,在同侧的话,可以根据轴对性的性质,将之转移为异侧.学生4认为,这有点像照镜子.这样,学生将实际问题转化为轴对称的知识解决,在交流中彼此分享、相互促进、相互提高.
2.引导探究式.
教师提出问题,让学生通过观察、探究提出自己的猜想,在推理、论证的基础上获得结论、掌握规律.例如,某景区团体购买公园门票价为1~50人的13元/张,50~100人的11元/张,100人以上9元/张.甲团少于50人,乙团人数不超过100人,两团共计应付票费1392元.若组成一个团体购票,应付1080元.(1)乙团人数是否也少于50人,为什么?(2)求甲乙两团各有多少人?学生猜想乙团人数少于50人,进而推算两团人数会少于100人,团购价应少于1300元,与1392元矛盾,因而乙团人数应不少于50人,不超过100人.
3.活动参与模式.
教师提出问题,引发学生小组活动探究,进行捜集数据、整理分析,然后解决问题.例如,某件商品的售价从原来的每件400元经两次调价后调至每件324元.经调查,该商品每降价2元,即可多销售10件,若该商场原来每月可销售500件,那么经过两次调价后,每月可销售该商品多少件?学生先计算每次的降价率为10%,然后根据“件数×单价=销售额”列出方程.
总之,数学建模教学,有利于学生将实际问题转化为数学模型来解,能够提高学生分析、解决问题的能力。
一、在高等数学教学中运用数学建模思想的重要性
(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。
(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。
(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。
二、高等数学教学中数学建模能力的培养策略
1.教师要具备数学建模思想意识
在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。
2.实现数学建模思想和高等数学教材的互相结合
教师在讲解高等数学时,对其中能够引入数学模型的章节,要构建相关的数学模型,对其提出相应的问题,进行分析和处理。在该基础上,提出假设,实现数学模型的完善。教师在高等数学的教学中融入建模意识,让学生潜移默化的感受到建模思想在高等数学教学中应用的效果。这样有利于提高学生数学知识的运用能力和学习兴趣。例如,在进行教学时,针对学生所学专业的特点,选择科学、合理的数学案例,运用数学建模思想对其进行相应的加工后,作为高等数学讲授的应用例题。这样不仅能够让学生发现数学发挥的巨大作用,而且还能够有效的提高学生的数学解题水平。另外,数学课结束后,转变以往的作业模式,给学生布置一些具有专业性、数学性的习题,让学生充分利用网络资源,自主建立数学模型,有效的解决问题。
3.理清高等数学名词的概念
高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学
教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。
4.加强数学应用问题的培养
高等数学中,主要有以下几种应用问题:
(1)最值问题
在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。
(2)微分方程
在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。
(3)定积分
微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。
三、结语
总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。
【摘 要】 近年来,高速发展的生产力和日新月异的科技,不仅给数学的应用提供了广阔的市场,也日益凸显着数学建模的重要性。但数学应用意识以及社会实践能力的培养,一直是初中生在数学学习过程中比较薄弱的环节。为了给学生们创设一个好的自主学习的环境,提高其用数学这一工具解决实际问题的能力,中学数学建模教学的开展的至关重要,这对形成学生应用数学的意识,提高分析问题并解决问题的能力,培养其联想与想象的抽象思维能力,以及其敏锐的洞察力,还有团队协作的精神都有很大的帮助,对于全面促进中学数学素质教育有非常重要的意义。
【关键词】 数学应用;初中数学;兴趣;创新
一、对数学教学问题的看法和分析
一直以来,中学数学教学存在很多问题,新人教版教材也是如此:教学中重知识轻思想,重结论轻证明,重理论轻应用,教学内容远离实际。面对诸多问题的教学系统,学生是受影响最大的群体。很多中学生会说:数学就是虚无缥缈并且枯燥无味的,比如说求sin、cos、tan,求两三角形相似等等问题,为什么要求它呢?对于我今后的生活毫无意义,很多人没有学数学,但是照样生活幸福。因为在目前的体系中,数学确实给学生们的感觉就是脱离实际的,没能使学生真正认识到数学在归纳演绎、训练思维、科学应用等方面的乐趣,更不用谈充分发挥学生的创新能力。所以《新数学课程标准》提出:数学模型的建立,对于合理的描述社会和自然现象有良好效果。可以让学生在课程的学习中从问题情境出发,然后尝试建立模型,然后求解,最后对应用进行解释。经过这样的过程,增强学生对数学的理解,提高学生的观察力、想象力、实际操作与思维能力,随着学习的不断深入,创造性便由此酝酿并发挥巨大作用。
二、数学建模发展的背后意义
随着计算工具的发展,特别是因为计算机的产生而催生的信息时代,庞大的数据、各行各业激烈的竞争,对于定量分析、数据处理等等问题,都需要数学的参与。虽然数学的实际应用已经到达了空前的繁荣,但是数学建模在数学学习中的应用却没能体现出来,远远落后于现实世界的发展脚步。众所周知,数学建模在四、五十年前进入一些西方国家大学,不到20年时间,我国的几所大学对数学建模的引进也风生水起。数学建模的相关课程也在各类高校形成规模,一条为培养广大学子的数学分析、实践能力的道路开辟了出来。数学建模思想如雨后春笋,以欣欣向荣之势横扫西方和中国各大高校,但是数学建模作为一种特有的思考模式,它通过抽象、简化的方法,建立起能够近似刻画并解决实际问题,已然不仅仅是一种语言和方法,而更是一种有利的手段。虽然有在大学阶段进行强化和补充,但从其效果来看是远远不够的。于是,对于在初中时期就进行数学应用能力的培养成为了新的要求、重点。当前,学生作为教学环境的主体,是否能够将所学转化成所用就成为教学效果的重要评判标准。
三、数学建模教育的重要作用
1.对应用数学的意识的培养。遇到实际生活中的问题,可以学以致用。以一个数学学习者以及实践者的立场来解决问题。
2.极大的提高数学学习的乐趣。能够在生活的诸多方面利用数学思维来解决问题,可以说成为生活中一个有力的助手。
3.提高对于数学学习的信心。传统教学中,数学以其抽象的思维以及各种看似脱离实际的问题,让学生晕头转向,逐渐让学生开始害怕数学学习。而数学建模让抽象的数学一下子变得贴近生活,更容易接受。凭借不断的学以致用,自信心便会慢慢树立。
中学生正处于人生的黄金时期,对于各种能力的培养都是关键时期,所以对于数学思想的灌输应该跟上来,这将让学生终身收益。教师可以在适当的时候研究哪些内容可以引入模型教学,通过一些生活实践来让学生建立模型来解决问题,结合教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。比如说:出租车作为现代日渐流行的代步方式,对其收费标准的探讨可以引入数学模型。某地的收费标准有两种,A方案的起步价是15元,5千米以上1.5元/km,B方案的起步价为10元,3千米以上1.2元/km,如果你要到达10km以外的某地,问选何种方案更经济,相比另外一种方案省了多少钱?虽然初中数学中出现的很多应用问题是一些比较简单的数学建模问题,但是麻雀虽小,五脏俱全,它包含了数学建模的全过程,我们可以把数学建模的思想方法渗透其中。
四、结语
宝剑锋从磨砺出,梅花香自苦寒来。这就需要在广大教育战线上辛勤耕耘的各位同仁在教学的始终,要把数学建模意识贯穿起来,也就需要对学生进行不断地引导,形成用数学思维的观点去分析、观察和表示各种事物的逻辑关系、空间关系和数学信息的习惯,从五花八门的实际问题中抽象概括出我们熟悉的数学模型,进而运用这一数学手段来解决问题,让数学建模意识成为学生思考问题的方法和习惯。所谓工欲善其事必先利其器,当数学建模思维已经成为学生自然而然的思维方式,用数学建模思想解决实际问题也运用自如,那么创新能力,对实际生活的驾驭能力的提升将可见一斑。量的不断积累,带来的将是质的飞跃,随着数学建模思想对学生的熏陶,对提高学生分析问题、解决问题的能力,提高其联想与想象的能力,培养其敏锐的洞察力,以及团队协作的精神都有很大的帮助,对于全面促进中学数学素质教育有非常重要的意义。
参考文献
[1]谭永山.建模思想在提高初中数学教学质量中的作用与教学策略[J].学子(理论版).2015.05:39
[2]庄红敏.初中数学教学中如何引导学生自主学习[J].中国校外教育.2015.01:35
[3]孟庆飞.初中数学教学中的素质教育[J].科技视界.2015.04:301
浏览量:2
下载量:0
时间:
大学高等数学教育是促进学生发展全面性的一门基础性学科,其在学生思维、思辨能力的培养过程中扮演着十分重要的角色。下面是读文网小编为大家整理的大学高等数学论文范,供大家参考。
一、在高等数学的教学中融入数学史的必要性
(一)在教学过程中插入数学史教育
在教学过程中,涉及一些数学相关知识的人物、历史时,可以利用课堂上的3~5分钟向学生介绍一下,提高学生学习高等数学的兴趣,将高等数学中繁杂的数学符号、计算公式和有趣的数学历史相融合,鼓励学生积极、主动参与到高等数学学习中。著名数学家陈省身说:“了解历史的变化是了解这门科学的一个步骤。将数学发展的历史真实地展现给学生,是数学这一学科应该毫不犹豫地担起的职责。”高职院校高等数学教师提高自身数学素养,将数学史内容融入到高等数学教学教学中,势在必行。高职院校学生相对于本科学生基础弱,底子薄,在高等数学的学习中会遇到许多问题,自然影响学生的学习效果。在课堂教学过程中融入数学史的内容,从数学家们发现、发明解决问题的思路出发,引导学生思考解决问题,可以帮助学生更好地理解高等数学中的公理、公式,解决数学学习中出现的各种困难,树立学习信心,改变高等数学枯燥乏味、一味证明的课堂教学模式。
(二)将数学史蕴涵的思想、方法融入到高等数学教学中
弗赖登塔尔在《作为教学任务的数学》中指出,数学概念、公理及数学语言符号等,包括数学问题解决,不应机械地灌输给学生,或仅是由结果出发,推导出其他数学知识的方式,这种颠倒的教学法掩盖了创造性思维过程,即学生的数学学习不应该重复人类的学习过程,而应该进行“再创造”。数学史烙印着数学家处理数学问题的痕迹,其中蕴藏着数学家处理相关问题的思想和方法,比如归纳推理、概况分析、类比猜想等逻辑思维方法及跳跃性的直觉思维方法,这些恰是数学教学中学生所必须具备的。在高等数学教学中,作为数学教师,数学中的这些思想、方法应该利用数学史选择典型的数学史题材,分析数学家发明、发现过程中的心智活动,透析数学家的脑海里的灵感,以对学生的数学学习起到启迪思维的作用。著名教育家斯金纳(Skinner)说:“如果我们将所学过的东西忘得一干二净,最后剩下的东西就是教育的本质了。”最能传承一门学科本质的就是这门学科的历史,高等数学也不例外。多数高职院校的学生在学习完高等数学课程之后,由于多种原因,除少部分与专业相关的内容外,其余知识都会慢慢淡忘,留在学生大脑中应当是高等数学独有的思维方式,解决问题的方式、方法,这正是高等数学教育的目的和价值所在。数学史在这些方面的推动作用是毋庸置疑的。数学思想的提炼和方法的运用是数学教学的关键,数学思想方法在教学中的重要意义,受到很多数学教育家的重视。高等数学课程内容始终围绕着“基础知识”与“思想方法”两个基点。在教学中,教师必须深挖教材中的思想方法,化“无形”为“有形”。通过数学史的教育,将鲜活的数学思想方法渗透在数学知识的学习过程中。
(三)数学史的融入符号学生的认知发展规律
影响学生学习的心理学因素包括认知因素和非认知因素。直接参与数学学习认知活动的因素称为认知因素,包括原有的数学认知结构、现有的思维发展水平和数学能力等;不直接参与数学学习认知活动的因素称为非认知因素,包括兴趣、动机、情感和意志等。数学史可以帮助学生加深对数学概念、方法和思想的理解,数学史也影响学习中的记忆和迁移。同时,数学史影响学生的认知结构。认知结构是学习者头脑中的数学知识按照自己理解的深度、广度,结合自己的感觉、直觉、记忆、思维、联想等认知特点,组合成一个具有内部规律的整体结构。所以,数学史通过影响学生的认知结构参与学生的数学学习活动。数学教育的目的在于使受教育者获得发展,数学学习的结果不仅是知识的习得,更重要的是思维的发展、形成优良的数学思维品质,数学认知结构的完善,等等。这一过程的完成,就需要抽象的数学思想方法的加入,这些思想方法的习得主要依靠数学史的融入实现。另外,高等数学课程教学中融入数学史教学,也符合维果茨基的“最近发展区”理论,即教师在教学时必须考虑学生的两种发展水平:一种是学生现有的发展水平,另一种是在他人尤其是成人指导下可以达到的较高的发展水平,这两者之间的差距就叫做“最近发展区”。教学要想实现既定目标和效果,必须考虑学生现有的思维发展水平,并要走在学生发展的前面。通过数学史的融入,可以帮助学生在高等数学学习中在教师恰到好处的逐渐引导下学习数学思想方法。在高等数学课堂教学中,遵循学生的心理发展规律,符合学生的认识发展水平,通过相关典型历史材料的引入,引导学生学习高等数学的相关知识及思想方法,促进学生认知水平的再次升华。
二、结语
数学史与高等数学课程的融合是必然的,不同阶段对数学史与数学教育的融合有不同的要求。比如在义务阶段数学教学中,引入数学史,培养学生的数学思想、方法和优良的数学品质。高职院校的高等数学课程教学承载着更多的任务和目标,通过高等数学的学习,要使学生对数学的思想、方法有一定的认识,同时提高学生的思维水平。这些问题的解决都需要在课堂教学中恰当地引入、融合数学史教育。在高等数学教学中融入数学史教育,帮助学生消化理解数学教学内容势在必行。那么,在课堂教学中如何利用数学史呈现课程内容,激发学生的学习兴趣,提高学生的思维水平,是今后的高等数学教学中急需讨论、解决的问题。
一、电大成人教育高等数学教学现状
1.在开发学生智力方面有待提高
高等数学教学过程中,数学知识本身就是通过社会实践来得出的对事物的客观认识,是推动社会发展的基础条件,是人类生存繁衍的财富。而智力是人类对知识的掌握与运用能力的具体体现。电大成人高等数学教学根本目的是培养学生的思维能力和运用数学知识解决实际问题的能力,因此需要加强对学生智力的开发与培养。现阶段,我国电大成人教育高等数学教学在学生智力培养方面还存在缺陷,需要加以弥补和纠正。
2.教学课时、内容等存在不合理现象
接受成人教育的不少学生基础较差或已经淡忘,在学习的过程中相对吃力。另外由于电大成人教育以函授、网络教育、电视教学等形式为主,数学教学的面授课时相对较少,为了能够使学生更好地全面接受知识,在课时减少的情况下,高等数学教学内容却没有减少。这样就导致教师一节课不得不讲授几个课时的内容,这对教师以及学生都是一个巨大的挑战,一些本身基础就差的学生很难在这种教学模式下掌握数学知识,更谈不上掌握数学知识的运用能力。
3.电大成人教育高等数学教学师资力量有待加强
随着我国教育事业的发展,电大成人教育已被人们广泛地接受,越来越多的人开始接受电大成人教育,使得电大成人教育招生规模不断扩大,学生人数逐渐地增多。然而,整体而言,电大成人教育学生的增长率远远高于电大成人的教师的增长率,导致教师教学压力较大。由于高等数学是电大成人教育教学的公共基础课程,对主讲教师的要求很高,不仅要求教师能够系统化地讲解相关内容,还要能够调节课堂气氛,做到生动、有趣、严谨、自然,培养学生的学习积极性。然而就现在电大成人教育院校师资力量来说已经很难满足多个方面的具体要求,这就给高等数学教学带来一定的困难。
二、探索电大成人教育高等数学教学的措施
针对电大成人教育高等数学教学现状,具体的优化措施需要从教学内容以及教学方法两个方面进行,具体措施如下:
1.电大成人教育高等数学教学内容优化措施
在教学内容方面,具体的优化措施体现在以下几个方面:
①简化教学难点。在电大成人教育高等数学教学过程中,教师应该根据具体专业特点,充分研究课程要求,适当的调整教学内容。在教学过程中,教师需要结合学生的知识储备,将新旧知识链接作为教学的关键,减轻教学的负担,排除教学难点。
②针对现阶段电大成人教育高等数学教学重理论轻实际应用的现象,教师在教学内容上应该赋予其更多的时代性。如今数学理论以及数学方法已经渗透到包括信息、航天科技等新兴高科技领域在内的各个领域。因此,在教学过程中,教师应该根据不同专业开设不同的教学窗口,选用合理的教材,在讲解具体章节的过程中,可以延伸到某一章节相关的知识。如函数学习过程中,教师可以向学生介绍一些求极限的函数,包括单利、复利、人口模型等。对这些教学内容的调整,不仅能够巩固理论知识,还能够培养学生对数学知识的实践应用观点和能力。
③开设数学实验课。教师可充分利用计算机网络技术,把在教学中遇到的问题用形象的作图和动画表示出来,并将一些复杂的计算问题安排在实验课上,这样既能节省上课时间,又让学生直观地理解所学的知识。高等数学教学不仅要让学生掌握必要的基础知识,还要培养学生善于在解决实际问题中应用数学知识建立数学模型的能力,培养学生使用计算机进行计算、分析的能力。
2.电大成人教育高等数学教学方法优化措施
在电大成人教育高等数学授课教学方法方面,具体的优化措施体现在以下几个方面:
①改进教学方式,注重学生自主创新能力的培养。教师应该突破传统数学教学思想的束缚,探究多元化的高等数学教学方法,除了对必要的基础知识讲解外,还应适当地增加学生自习课、问题式教学法等。在学习方法上,教师应该引导学生主动对知识进行归纳与总结,提炼有用的知识,提出问题并探索解决问题的办法。
②充分利用现代化教学理念与设备,充实高等数学教学方法。传统的高等数学教学方式主要是通过教师板书与讲授相结合的模式,在课堂上,教师往往只注重对数学知识、定理等的讲解,而忽略了对课堂气氛的把握,这样很容易使得数学课堂变得枯燥,从而让学生的学习兴趣逐渐消弱,甚至有的学生会产生厌学情绪。利用多媒体教学模式,则可以充分发挥学生的课堂主体地位作用,丰富数学教学的趣味性,提高学生学习的积极性。此外,电大成人教育院校还应该加大师资队伍建设,聘用更多的优秀教师,并加强对教师的考核力度,优化教师结构。
三、总结
总之,电大成人教育高等数学教学是专业课程的基础,只有不断地优化教学内容与教学方式,加大师资建设力度,重视对学生应用数学知识能力的培养,提高学生的数学素养,才能适应教育事业的发展,为社会培养更优秀的人才。
浏览量:2
下载量:0
时间:
在大学数学专业中,高等数学是大一学生重要的基础课程,是理、工、农、医等高等教育中涉及学生最多、对学生的影响最远的课程之一。下面是读文网小编为大家整理的大一高等数学论文,供大家参考。
通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。首先,我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。所以希望大家无论如何,一定要把高数考好。记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。
其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦(注意!!!)。可能之前会听到家长或者老师会说,到了大学就可以好好玩了。不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。而且,大学其实并不比高中轻松(这句话大家一定注意)。 下面我来介绍一下,大学高数的一些学习方法:
第一,还是老生常谈,那就是课前预习,而且,我觉得在大学课前预习显得比以前任何时候都重要。因为,大学课程的进程可不是一般的快。希望大家能保持课时比老师快两节,练习比老师快一节。最低限度,是不能落下(其实,这个要求也不低,但希望大家一定不能落下)。 第二,要好好利用课堂时间,对于预习中不明白的地方,注意听讲,而对于自己觉得简单的地方,大家就可以做些相关练习了。有一点大家需要注意,不明白的问题一定不要积压,要及时的问同学或者老师(建议是老师,但前提是你对这道题目要有一定的思考),经常问老师题目对你的好处是很大的,因为考试的题目一般都是你们的老师出的,所以老师在给你讲题的时候会不知不觉的给你透漏考试的一些信息,同时,万一考试时你出了状况,结果考了个五十几分,如果老师对你有不错的印象,她是可以把你送过的。
第三,就是你所需要做的题目,可以说只要你能把课本习题和老师上课讲的所有的题都弄会,考试是完全没有问题的,其他的题目就完全没有必要了,这里就不像高中要做大量的其他习题,但大家要注意,课本的题是有一定难度的。希望大家认真对待,不要气馁,不懂就问。这里的最低限度就是课本例题、练习册,一定不能再少了。想拿高分的同学,一定要多做题(范围也就是课本和老师讲的题),特别是向拿奖学金的同学。
第四,希望大家把学习时间一定要给足了,只靠考前突击,高数是没办法过的,除非你是天才。强烈建议大家去自习室,养成晚自习的习惯。宿舍的学习环境并不好,如果就想在宿舍学习,那么你必须先把桌子收拾干净,这样可以很好的提高你的注意力,原因大家应该体会的到。
好了,说的不少了,希望大家能有所收获,预祝大家取得优异的成绩。
大一高等数学学习心得转眼之间大一已经过去了一半,高数的学习也有了一学期,仔细一想,高数也不是传说中的那么可怕,当然也没有那么容易,前提是的自己真的用心了。 记得刚开学的时候,我对高数还是很害怕的,我虽然上课认真听讲,但我还是不大明白,当然那是由于刚开始的课程确实是很抽象的,很难以高中时的解题思维理解,但后来学的就不是那么的吃力了,再加上我的勤奋看书。
对于高数的学习大多数人都认为应该课前预习、上课认真听讲、课后复习。但那只能是理想的状态下,事实是不允许我们那样做的。由于我的数学还算有点功底,一直以来,我只做到了其中的一点半,而且成绩还算过得去,因此,我认为对于高数的学习,我们应该上课认真听讲,时课后复习。我们主要应该在课堂上认真听讲,理解解题方法,我们现在所需要的是方法,是思维,而不仅仅是例题本身的答案,我们学习高数不是为了将来能计算算术,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。
在课后复习时,再根据例题好好体会解体的方法,一定要琢磨透。至于您的方法我觉得还不错,容易的快速过,困难的花点时间耐心讲解。只是我们每学期都要放弃后边的一部分内容,是否可以考虑相对放弃一些前面简单的,而加快进度讲完后面的一些内容。
高等数学课程是高等理工科院校普遍开设的一门基础课程,是众多专业的学生进一步学习基础课程和专业课程的基础。但由于高等数学本身具有高度的抽象性和深奥性使教师在授课时出现了诸多不尽人意之处。如何活跃课堂气氛,提高教学质量是高校教育者们值得深思的问题。
一、高等数学教学的现状
1、高等数学课时缩减
当前我国高等教育正逐步正由精英教育逐渐转为大众化教育,为了加强实践教学,高等数学[1]的教学内容有所变动,授课学时在1996年前是220学时左右缩减到现在的160学时左右。虽然减少了应用方面的内容,但每章节数学知识点的体系保持不变。在缩减课时的情况下,教师上课往往出现“向前赶”的现象,使得课堂讲解不够细致,学生学起来囫囵吞枣,不求甚解。
2、学生数学基础功参差不齐,增加了教学难度
现今高校录取新生的政策,对大多数专业来说基本是看高考全科的总分数,没有顾及数学成绩对学 习后续专业课程的影响,因此往往出现同一专业的学生数学成绩功悬殊较大。针对学生数学基础功参差不齐的情况,如何因人施教,是高校教学工作者值得深思的问题。
3、学习态度和兴趣问题
兴趣是最好的老师,激发学生学习高等数学的兴趣无疑会对教学产生良好的效果。在新环境下对刚入学的大学一年级新生而言,心理和学习方法上都有一个适应过程,高等数学本身所具有的高度抽象性、严谨的逻辑性的特点,往往使初学者望而生畏。再加上校园风气及网络、手机等因素的影响, 导致部分学生出现学习目的不明确,态度不端正等现象。
4、教学方法、教学道具有待改进
传统的高等数学教学往往是按照定义-定理-推论-习题的逻辑顺序展开,课堂上只讲“是什么”,很少讲“为什么”,形式化演绎,不是提出问题,而是直接下定义,对于数学问题多半是技能训练性的,通过题海战术,欲使学生掌握题目类型和解题技巧。授课方式一般是一教师、一黑板、一粉笔的枯燥教学,教学方法多是一贯的“满堂灌”,学生在学习过程中往往处于被动的状态,师生之间的交流比较少,使得课堂气氛通常不够活跃。
二、高等数学课程教学模式改革的举措
1、小班制分层次教学
我国著名的教育学家陶行知曾经说过:培养教育人和种花木一样,首先要认识花木的特点,区别不同情况给以施肥、浇水和培养教育,这叫“因材施教”。从小学到大学,数学学习经历了一个较长的过程,在这个过程中由于教育资源、学习习惯、个人素质和兴趣等使得大学新生的数学成绩有所差距。对教授大一新生的高等数学教师来说,非常有必要了解学生成绩背后的原因。根据学生专业需求、兴趣不同、基础功强弱等因素,对学生分班级、分层次、分群体选择不同的教师、教学目标和教学方法,实施不同的教学方式,让每个学生都能有所学,有所获。[2]
分层次的方式很多。比如对学生高考成绩进行摸底,通过多元统计软件进行成绩聚类分析,由此将学生大致分成优异、良好、合格三种小班级。成绩优异的学生通常基础功较强,数学思维活跃、善于分析解决问题。在授课时对这类学生要制定较高的教学目标,使学生不仅计算能力有所提高,还要培养高等数学中抽象理论的认知和理解能力。在情况允许的情况下,还可以开展讨论班,抽取教材中理论概念型的题目及和讲授章节相应的考研题目,让同学们讨论,练笔;对成绩合格的同学,在授课时可以相应的减少抽象理论的讲解,首先注重教材中具体计算题目的讲解,使学生能按葫芦画瓢似的解出题目,经过学习上的不断积累,学生必然敢于动手下笔解决问题,进而引起学生的学习兴趣。
在就近(如同寝室,同专业)的原则下,还可以实施帮扶政策,即让成绩优异的同学帮扶成绩一般的同学。这样一方面锻炼了成绩优异同学的讲解能力,提高成绩一般同学的学习进度和程度,又能促进同学间的交流,易于形成良好的学习氛围。
2、改进教学方法和教学手段
学习数学必须讲究思想方法。通过以思想方法的分析来带动具体数学知识内容的教学,我们即可真正地做到把数学课“讲活”,讲懂”和“讲深”。[3]所以教师要更新教育观念,积极主动地采取一些应对政策,优化教学方法和教学手段,使学生由“厌学”到“愿学”,成为想学、爱学、会学的人。
除了传统的讲授式教学,教师在课堂教学中还可以用研究式、讨论式、自学指导式等启发教学方法。同时,教师在授课时应注重师生互动。学生对教师提出的问题要有响应,教师和学生之间要有对话和交流。为此在课前教师需要熟悉教学内容,精心设计一些能够启发学生思考的问题,给出一些事例和问题的情境,引导学生通过观察、思考、讨论等途径发现问题解决问题。[4]有时对部分内容教师还可以设计陷阱教学,一步步将学生引向错误结论方向,当出现矛盾陷入僵局时,教师再因势利导带领学生讨论问题的症结所在。这无疑能引起学生兴趣,调动学生深入思考和独立钻研的积极性,活跃了课堂气氛,甚至能达到举一反三的课堂效果。
另一方面,在教学中要突破黑板二维空间的局限,逐步引入现代化教学手段,课堂教学运用多媒体和数学软件,满足课程在计算机图形、数值计算、数学建模等方面的需求,开发学生的空间想象能力和计算机软件操作运用能力。[5]在课时缩减的情况下,运用互联网进行辅助教学,指导学生正确适宜地运用网络搜查高等数学的相关资料,自我解惑,提高学生自学能力。还可以建立班级学习交流群,学生可以在群里畅谈对高等数学课程教学的想法和建议,以便教师做出相应的指导和调整。对同学提出的问题,教师可以先鼓励同学间你问他答,锻炼学生自我解惑的能力,再选择性地进行答疑和总结。互联网的运用无疑为课堂教学、课后学习和答疑提供了便利之处。 3、引进师资力量,加强教师交流培训
教师是学习的领路人,只有教师在教书过程中发挥主导作用,引导学生,与学生产生共鸣,才生调动学生的学习积极性。
为保证教学质量,引进教师高学历人才和学科带头人,形成一个高学历、教学经验丰富的教师团体。加强教师对内交流。在数学教研室,定期开展高等数学教学课堂体会和经验交流会,使教师间取长补短,提升教学质量;对新教师实行助教制,通过跟班听取老教师上课、批改作业和辅导学生答疑等,使新教师熟悉教材内容,掌握一定的教学方法和规律。鼓励在职教师继续深造,提供更多机会让教师走出校门,参加学校间的教学研讨会,参加各级教育部门和学术部门举办的各类师资培训班,学习国内外的教学思想、教学方法和教学技术。
4、完善教学考核评价体系
高等数学教学评价一般仅仅局限在一个学期一次期终考试的考核上,这种考核方法造成了学生临时抱佛脚的“突击式”学习现状,往往不能完全放映出学生的学习态度和真实掌握知识的程度来。加强平时考核力度,变期末一次终结性考试为全过程的行程性考核,实现教学的步步为营,逐步扎实推进,避免学生以一次期末考试决定胜败的情况,为此有必要对考核评价体系做出一些调整。[6]
平时作业和课堂测试能反映出学生对每个章节知识掌握的程度。教师通过审阅,能察觉出学生学习态度、学习习惯、数学悟性等各方面的表现。教师在每次批改时可以都给出,如:A+(优异)、A(良好)、B(合格)、C(未完成)几类相应的评价。在结课之前,根据每个练习和课堂测试情况给出每个学生相应的平时成绩;数学学习是循序渐进的过程,一次缺课漏学的知识可能影响到后面知识点的学习。为保证教学质量教师可以将出勤率作为评价成绩方式之一。可以以班长或团支书为负责人,实行课课记名制,督促和监管学生课堂到位,促进学生学习的主动性,改变平时不努力、考试搞突击的前松后紧的学习不良作风。
在学期末,教师可以平时成绩、出勤率和期终考试以加权的方式给出学生学习高等数学全面的成绩评价。
高等数学课程的改革和创新是个长久的事情。教育工作者们任重而道远。只有在教学过程中不断摸索,不断总结,才能不断完善和创新。
猜你感兴趣:
浏览量:2
下载量:0
时间:
农村数学教育由于师资力量薄弱、教学辅助工具缺乏等等方面原因的影响,对于农村中小学学生的数学学习造成了很大的不良影响。下面是读文网小编为大家整理的农村数学教学的论文,供大家参考。
一、制作评价工具
在实施评价过程中,需要借助评价工具对学生进行评价,所以,先制订教学计划,然后根据计划,设定相应的评价标准和要求,制作相应的评价工具,常见评价工具有评价量规、学习检查表,学习评价表,学习记录表等。评价量规是一种有效的评价工具,在量规制作过程中,要根据教学目标设计量规的不同准则,设计不同的评价等级,而且,需要用具体可操作性的语言清楚地描述量规,评价量规可以清楚地显示评价方式,让学生学会按照老师的期望指导自己的行为,让学生明确自己的学习要求,检查自己学习效果和收获,学生也可以根据评价量规进行自评和他评。
二、师生共同参与评价
评价是一门艺术,评价应尽可能地挖掘学生的潜能,增强学生自信心,新课程标准实施的要求中,要求对学生的评价既有教师的评价,同时又要重视学生的自我评价和相互评价,通过学生自评、学生互评、教师评价、小组互评、观察法、测验法等各种各样评价方式,让师生共同参与评价。教师评价是课堂中最常见的一种评价方式,教师评价不但能够影响课堂教学民主和谐气氛的形成,而且对教学进程具有导向作用,课堂上教师恰到好处的评价不但可以让学生备受鼓舞,而且能够让学生认识到自己不足。教师评价要及时,以激励为主,给予学生提供进步的动力,特别是对于胆怯害羞的学生,内心缺乏自信心,不爱举手回答问题,教师一个赞许的眼神,一个鼓励性的手势,一点微笑,一句简单的表扬的话语,对他们来说都能受到重大的鼓舞,评价表扬学生时候要情真意切,发自内心地赞许,带有丰富的情感,善于发现学生闪光点,注重评价个体差异。除此之外,教师评价还应该具有启发性,启发学生思维,引导他们思考。
三、建立评价档案
评价档案,即学生成长记录袋,为每个学生建立评价档案,收集学生学习过程资料,包括学习记录表、评价量规、学习成果、在学习过程中得到的各种奖励、学习作品等。学习记录表中记录学生课堂发言次数,课堂讲话次数等;学习评价表,是学生自评、他评和教师评价的相关评语,记录着学生在学习过程中,关于探究问题、讨论交流、合作学习、课堂发言、作业练习等学习情况;评价量规,评价过程中的具体标准;将学生在学习过程中得到的各种奖励、优秀学习作品等,保存在评价档案之中,它详细地记录学生学习过程中的具体资料和相关评价。将上述评价信息进行综合整理分析,记录在学习档案中,学习档案是学生和老师共同参与完成和管理的,学生可以随时查看自己学习档案,了解自己学习状态,认识自我,了解自己优点和缺点,促使学生在学习中不断反思,改正缺点和错误,不断进步,从而达到通过评价促进成长的目的。形成性评价是关注过程的评价,是重在学生全面发展的评价。农村数学课堂实施形成性评价不仅能改变学生学习数学消极怠慢的表现,使学生在数学课堂学习过程中不断体验进步与成功,增强学生学习数学的自信心,而且还能促进学生数学综合运用能力的全面发展。
【摘要】
随着新课程改革的进一步深入,小学数学课程改革已初见成效,教师在教学观念改变的同时,教学行为,也在自觉与不自觉中有了明显改变,如:课堂的预设、教学情境的创设、学生自主学习、算法多样化、目标多元、方法多样的评价体系等方面,使得学生的学习数学的兴趣得到了激发,课堂教学面貌一新。但当前农村小学数学课堂教学存在着教学模式单一,教学方法陈旧;课堂教学以教师为中心,忽视学生主体地位,重知识与结论,轻能力与过程,忽视对学生学习兴趣培养等问题,导致课堂教学高耗低效。笔者从注重课堂预设、抓“生成”;创新教学方式,改革课堂教学模式;因材施教、分层要求;培养学生的学习兴趣等四个方面提出该如何提高农村小学数学课堂教学的效率。
【关键词】小学数学;课堂教学;有效性
打破传统的教学模式,正确处理教与学的关系、培养学生学习数学的兴趣是教学的重点。笔者通过自身多年的教学实践和参与教学研究活动,总结发现当前农村小学数学课堂中存在着以下问题。
一、数学课堂教学存在下列问题
一是数学课堂中没有摒弃传统的教学方法。有的老师“穿新鞋,走老路”的情况,受传统教育模式和以往的教学经验的影响,在课堂中不敢把时间留给学生,使用满堂灌的教学方法、学生的学,也只能是死记硬背、题海战术。教师教得累,学生学的苦,效果低下。二是课堂还是以教师教讲授为主,不能体现学生的主体学习地位。在课堂教学中教师总觉得不讲学生就不会,讲的少怕学生不会。在教学中老师总想当“警察”、“裁判员”,学生只是观众,是教师的配角,教师只顾“灌输”,学生只顾“接受”,教师不注重知识的生成,学生不掌握“怎样学”,没有成为学习的主体,不能体验知识的生成过程。三是重视知识的传授,轻视能力的培养,教学重结果,轻过程。在课堂教学中,重视是不是获取了知识,轻视学生知识得到生成过程、学习方法的指导、学习习惯的养成的培养;重视对教学结果的强化训练,忽视了数学与生活之间的联系。不注重对学生学习兴趣、习惯、情感态度等非智力因素,挫伤了学生对数学的好奇心和求知欲。四是教师照本宣科,扮演着被动的课程执行者的角色,不能成为课程的开发者、决策者、创造者,忽视因材施教。教师根据教材统一的内容,对学生提出相同的要求,同样的方法开展课堂教学,严重忽视农村学生的学习能力、思维水平等个体差异,导致课堂不能和学生的生活实际联系起来,学生理解起来困难,造成整体效果低下。
二、提高农村小学数学课堂教学的策略
1.抓“预设”促“生成”
“凡事预则立,不预则废”,教师要做好课堂教学预设,从而保证教学活动的计划性和效率性。教师要成为课程的开发者、决策者、创造者,在这个过程中需要教师对教材内容的呈现方式进行再加工,既要符合新课程的理念,又要根据学生已有的知识经验针对性地培养学生。就学生而言,即需要预设性发展,也需要生成性发展,它是个性的张扬,心灵的共鸣,思维的共振。教师是学生学习的引导者,要想驾驭课堂,要设计“弹性预设”,把学生置于教学的出发点和核心地位,应学生而动、应情境而变,让学生在现有的条件下进入学习,课堂才能真正显现的活力,学生的学习才能主动、富有个性。
2.改革课堂教学模式,激发学生学习兴趣
学生学习应当是一个活泼的、主动的和富有个性的过程,课堂的主要形式应当是自主探索、小组合作、汇报交流、教师点拨、学习评价,学生应当有足够的时间和空间经历观察、猜想验证、计算、实践等活动过程,主动获取知识。在教学中教师尽力调整角色,留出足够的时间和空间,让学生积极主动地参与到学习过程中来,把他们的潜能激发出来。在学习方式上,让学生尽情地说说议议,做做演演,还可以当小老师,指导和帮助同伴来学习;在学习空间选择上,让学生走出教室,到操场上量篮球场的长和宽,在校园里计算花园的面积,把将做法改变为找知识、求学法,全面关注学生获取知识的过程与方法。这样课堂才会丰富有趣,有利于学生学习知识,形成能力。
3.因材施教,分层要求,关注个体,促进课堂效率的整体提高
农村学生在学习习惯、学习能力等方面都存在着较大的差异。高效课堂的构建,并不是教师在课堂上占用的时间少了,教学就高效了,而是在教学中要针对本班的学情,因材施教,对不同的学生从目标要求,学习方法、练习巩固、评价上分层要求,让“不同的人在数学上得到不同发展”,教师要寻找每位学生的“闪光点”,多鼓励、表扬,少训斥、批评,让每位学生都产生积极的学习情感,促进学生整体发展。
4.培养学生学习兴趣,提升课堂效率
兴趣是构成学生学习动机中最为活泼、最为现实的成分。课堂教学不仅要重视学生知识的技能获取,还要通过开展各种数学活动和教师的评价激励,激发学生学习兴趣,每堂课给学生以知识、方法及新鲜感,营造和谐的课堂氛围,帮助学生提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,促进课堂效率的提高。总之,课堂是小学数学知识传授的主要场所,学生的大部分时间在课堂中接受数学知识和方法,所以要改变传统的教学模式。在数学课堂教学中,为学生营造轻松、和谐、平等的课堂氛围,精心预设课堂教学,在学生的自主探索、合作交流活动中正确指导,适时点拨,及时评价。让每位学生在学习中体验成功的喜悦,只有这样,才能激发学生学习兴趣、提高学生学习能力,真正提高农村小学数学课堂教学效率。
浏览量:2
下载量:0
时间: