臭氧层形成的原因_臭氧层的主要作用精选6篇
臭氧层的主要作用是吸收短波紫外线,大气层的臭氧主要以紫外线打击双原子的氧气,形成臭氧层的原因可能很多人都不太了解。下面由读文网小编为你详细介绍臭氧层的相关知识。
对臭氧层的保护
爱护臭氧层的消费者购买带有"无氯氟化碳"标志的产品;
爱护臭氧层的一家之主合理处理废旧冰箱和电器,在废弃电器之前,除去其中的氟氯化碳和氟氯烃制冷剂;
爱护臭氧层的农民不用含甲基溴的杀虫剂,在有关部门的帮助下,选用适合的替代品,如果还没有使用甲基溴杀虫剂就不要开始使用它;
爱护臭氧层的制冷维修师确保维护期间从空调、冰箱或冷柜中回收的冷却剂不会释放到大气中,做好常规检查和修理泄漏;
爱护臭氧层的办公室员工鉴定公司现有设备如空调、清洗剂、灭火剂、涂改液、海绵垫中那些使用了消耗臭氧层的物质,并制定适当的计划,淘汰它们,用替换物品换掉它们;
爱护臭氧层的公司替换在办公室和生产过程中所用的消耗臭氧层物质,如果生产的产品含有消耗臭氧层物质,那么应该用替代物来改变产品的成分;
爱护臭氧层的教师,告诉你的学生,告诉你的家人、朋友、同事、邻居、保护环境、保护臭氧层的重要性,让大家了解哪些是消耗臭氧层物质。
有了科学的方法,再加上我们的实际行动,我相信,在不远的将来,我们将拥有一片美丽而完整的蓝天。
形成臭氧层的原因
自然界中的臭氧,大多分布在距地面20Km--50Km的大气中,我们称之为臭氧层。臭氧层中的臭氧主要是紫外线制造出来的。大家知道,太阳光线中的紫外线分为长波和短波两种,当大气中(含有21%)的氧气分子受到短波紫外线照射时,氧分子会分解成原子状态。氧原子的不稳定性极强,极易与其他物质发生反应。如与氢(H2)反应生成水(H2O),与碳(C)反应生成二氧化碳(CO2)。同样的,与氧分子(O2)反应时,就形成了臭氧(O3)。臭氧形成后,由于其比重大于氧气,会逐渐的向臭氧层的底层降落,在降落过程中随着温度的变化(上升),臭氧不稳定性愈趋明显,再受到长波紫外线的照射,再度还原为氧。臭氧层就是保持了这种氧气与臭氧相互转换的动态平衡。
臭氧层的作用
大气臭氧层主要有三个作用。其一为保护作用,臭氧层能够吸收太阳光中的波长306.3nm以 下的紫外线,主要是一部分UV—B(波长290~300nm)和全部的UV—C(波长<290nm=,保护地球上的人类和动植物免遭短波紫外线的伤害。只有长波紫外线UV-A和少量的中波紫外线UV-B能够辐射到地面,长波紫外线对生物细胞的 伤害要比中波紫外线轻微得多。所以臭氧层犹如一件保护伞保护地球上的生物得以生存繁衍 。
其二为加热作用,臭氧吸收太阳光中的紫外线并将其转换为热能加热大气,由于这种作用 大气温度结构在高度50km左右有一个峰,地球上空15~50km存在着升温层。正是由于存在着 臭氧才有平流层的存在。而地球以外的星球因不存在臭氧和氧气,所以也就不存在平流层。 大气的温度结构对于大气的循环具有重要的影响,这一现象的起因也来自臭氧的高度分布。其三为温室气体的作用,在对流层上部和平流层底部,即在气温很低的这一高度,臭氧的作用同样非常重要。如果这一高度的臭氧减少,则会产生使地面气温下降的动力。因此,臭氧的高度分布及变化是极其重要的。
流层中的臭氧吸收掉太阳放射出的大量对人类、动物及植物有害波长的紫外线辐射(240-329纳米,称为UV-B波长),为地球提供了一个防止紫外辐射有害效应的屏障。但另一方面,臭氧遍布整个对流层,却起着温室气体的不利作用。在平流层中臭氧耗损,主要是通过动态迁移到对流层,在那里得到大部分具有活性催化作用的基质和载体分子,从而发生化学反应而被消耗掉。臭氧主要是与HOX、NOX、ClOX和BrOX中含有的活泼自由基发生同族气相反应。
臭氧层被破坏的原因
1.当氟氯碳化物漂浮在空气中时,由于受到阳光中紫外线的影响,开始分解释出氯原子出来。
2.这些氯原子的活性极大,常喜欢与其它物质结合。因此当它遇到臭氧的时候,便开始产生化学变化!
3.臭氧被迫分解成一个氧原子(O)及一个氧分子(O2),而氯原子就与氧原子相结合。
4.可是当其它的氧原子遇到这个氯氧化和的分子,就又把氧原子抢回来,组成一个氧分子(O2),而恢复成单身的氯原子就又可以去破坏其它的臭氧了。
>>>下一页更多精彩“臭氧层被破坏的影响”
#p#副标题#e#
臭氧层的研究成果
研究臭氧层的300多位科学家,在布伊诺斯艾利斯举行的国际会议上预测,臭氧层大洞大概会在50年内闭合。研究人员说,臭氧层大洞的缩小主要是由于1987年各国开始采取措施限制向大气中排放氟利昂等到化学物质收到了预期效果。
研究人员同时指出,欧洲科学家在北极释放高空探测气球对不同高度的去层进行取样分析,并发表报告指出,云层会加速臭氧层中臭氧的消耗,加剧臭氧层的破坏,这是因为云层中的微粒会激活大气中的含氟化合物。
科学家发现,云层中的微粒对氯化物的激活作用要比太阳更为厉害,这些微粒冬天被云层中的冰晶包裹,但到了春天,冰晶中的水分会被阳光蒸发,从而导致大量微粒出现在云层中,这是为什么春天大气臭氧层的破坏程度最为严重的一个原因。
看了臭氧层形成的原因还看:
臭氧层被破坏的影响
臭氧层被大量损耗后,吸收紫外辐射的能力大大减弱,导致到达地球表面的紫外线B明显增加,给人类健康和生态环境带来多方面的的危害,已受到人们普遍关注的主要有对人体健康、陆生植物、水生生态系统、生物化学循环、材料、以及对流层大气组成和空气质量等方面的影响。
对健康的影响
阳光紫外线UV-B的增加对人类健康有严重的危害作用。潜在的危险包括引发和加剧眼部疾病、皮肤癌和传染性疾病。对有些危险如皮肤癌已有定量的评价,但其他影响如传染病等仍存在很大的不确定性。实验证明紫外线会损伤角膜和眼晶体,如引起白内障、眼球晶体变形等。据分析,平流层臭氧减少1%,全球白内障的发病率将增加0.6-0.8%,全世界由于白内障而引起失明的人数将增加10,000到15,000人;如果不对紫外线的增加采取措施,到2075年,UV-B辐射的增加将导致大约1800万例白内障病例的发生。
紫外线UV-B段的增加能明显地诱发人类常患的三种皮肤疾病。这三种皮肤疾病中,巴塞尔皮肤瘤和鳞状皮肤瘤是非恶性的。利用动物实验和人类流行病学的数据资料得到的最新的研究结果显示,若臭氧浓度下降10%,非恶性皮肤瘤的发病率将会增加26%。另外的一种恶性黑瘤是非常危险的皮肤病,科学研究也揭示了UV-B段紫外线与恶性黑瘤发病率的内在联系,这种危害对浅肤色的人群特别是儿童期尤其严重;
人体免疫系统中的一部分存在于皮肤内,使得免疫系统可直接接触紫外线照射。动物实验发现紫外线照射会减少人体对皮肤癌、传染病及其他抗原体的免疫反应,进而导致对重复的外界刺激丧失免疫反应。人体研究结果也表明暴露于紫外线B中会抑制免疫反应,人体中这些对传染性疾病的免疫反应的重要性还不十分清楚。但在世界上一些传染病对人体健康影响较大的地区以及免疫功能不完善的人群中,增加的UV-B辐射对免疫反应的抑制影响相当大。
已有研究表明,长期暴露于强紫外线的辐射下,会导致细胞内的DNA改变,人体免疫系统的机能减退,人体抵抗疾病的能力下降。这将使许多发展中国家本来就不好的健康状况更加恶化,大量疾病的发病率和严重程度都会增加,尤其是包括麻疹、水痘、疱疹等病毒性疾病,疟疾等通过皮肤传染的寄生虫病,肺结核和麻疯病等细菌感染以及真菌感染疾病等。
对植物的影响
臭氧层损耗对植物的危害的机制尚不如其对人体健康的影响清楚,但研究表明,在已经研究过的植物品种中,超过50%的植物有来自UV-B的负影响,比如豆类、瓜类等作物,另外某些作物如土豆、番茄、甜菜等的质量将会下降;植物的生理和进化过程都受到UV-B辐射的影响,甚至与当前阳光中UV-B辐射的量有关。植物也具有一些缓解和修补这些影响的机制,在一定程度上可适应UV-B辐射的变化。不管怎样,植物的生长直接受UV-B辐射的影响,不同种类的植物,甚至同一种类不同栽培品种的植物对UV-B的反应都是不一样的。在农业生产中,就需要种植耐受UV-B辐射的品种,并同时培养新品种。对森林和草地,可能会改变物种的组成,进而影响不同生态系统的生物多样性分布。
UV-B带来的间接影响,例如植物形态的改变,植物各部位生物质的分配,各发育阶段的时间及二级新陈代谢等可能跟UV-B造成的破坏作用同样大,甚至更为严重。这些对植物的竞争平衡、食草动物、植物致病菌和生物地球化学循环等都有潜在影响。这方面的研究工作尚处起步阶段。
对生态的影响
世界上30%以上的动物蛋白质来自海洋,满足人类的各种需求。在许多国家,尤其是发展中国家,这一百分比往往还要高。因此很有必要知道紫外辐射增加后对水生生态系统生产力的影响。此外,海洋在与全球变暖有关的问题中也具有十分重要的作用。海洋浮游植物的吸收是大气中二氧化碳的一个重要去除途径,它们对未来大气中二氧化碳浓度的变化趋势起着决定性的作用。海洋对CO2气体的吸收能力降低,将导致温室效应的加剧。
海洋浮游植物并非均匀分布在世界各大洋中,通常高纬度地区的密度较大,热带和亚热带地区的密度要低10到100倍。除可获取的营养物,温度,盐度和光外,在热带和亚热带地区普遍存在的阳光UV-B的含量过高的现象也在浮游植物的分布中起着重要作用。
浮游植物的生长局限在光照区,即水体表层有足够光照的区域,生物在光照区的分布地点受到风力和波浪等作用的影响。另外,许多浮游植物也能够自由运动以提高生产力以保证其生存。暴露于阳光UV-B下会影响浮游植物的定向分布和移动,因而减少这些生物的存活率。
研究人员已经测定了南极地区UV-B辐射及其穿透水体的量的增加,有足够证据证实天然浮游植物群落与臭氧的变化直接相关。对臭氧洞范围内和臭氧洞以外地区的浮游植物生产力进行比较的结果表明,浮游植物生产力下降与臭氧减少造成的UV-B辐射增加直接有关。一项研究表明在冰川边缘地区的生产力下降了6-12%。由于浮游生物是海洋食物链的基础,浮游生物种类和数量的减少还会影响鱼类和贝类生物的产量。据另一项科学研究的结果,如果平流层臭氧减少25%,浮游生物的初级生产力将下降10%,这将导致水面附近的生物减少35%。
研究发现阳光中的UV-B辐射对鱼、虾、蟹、两栖动物和其它动物的早期发育阶段都有危害作用。最严重的影响是繁殖力下降和幼体发育不全。即使在现有的水平下,阳光紫外线B已是限制因子。紫外线B的照射量很少量的增加就会导致消费者生物的显著减少。
尽管已有确凿的证据证明UV-B辐射的增加对水生生态系统是有害的,还只能对其潜在危害进行粗略的估计。
对循环的影响
阳光紫外线的增加会影响陆地和水体的生物地球化学循环,从而改变地球--大气这一巨系统中一些重要物质在地球各圈层中的循环,如温室气体和对化学反应具有重要作用的其他微量气体的排放和去除过程,包括二氧化碳(CO2)、一氧化碳(CO)、氧硫化碳(COS)及O3等。这些潜在的变化将对生物圈和大气圈之间的相互作用产生影响。对陆生生态系统,增加的紫外线会改变植物的生成和分解,进而改变大气中重要气体的吸收和释放。当紫外线B光降解地表的落叶层时,这些生物质的降解过程被加速;而当主要作用是对生物组织的化学反应而导致埋在下面的落叶层光降解过程减慢时,降解过程被阻滞。植物的初级生产力随着UV-B辐射的增加而减少,但对不同物种和某些作物的不同栽培品种来说影响程度是不一样的。
在水生生态系统中阳光紫外线也有显著的作用。这些作用直接造成UV-B对水生生态系统中碳循环、氮循环和硫循环的影响。UV-B对水生生态系统中碳循环的影响主要体现于UV-B对初级生产力的抑制。在几个地区的研究结果表明,现有UV-B辐射的减少可使初级生产力增加,由南极臭氧洞的发生导致全球UV-B辐射增加后,水生生态系统的初级生产力受到损害。除对初级生产力的影响外,阳光紫外辐射还会抑制海洋表层浮游细菌的生长,从而对海洋生物地球化学循环产生重要的潜在影响。阳光紫外线促进水中的溶解有机质(DOM)的降解,使得所吸收的紫外辐射被消耗,同时形成溶解无机碳(DIC)、CO以及可进一步矿化或被水中微生物利用的简单有机质等。UV-B增加对水中的氮循环也有影响,它们不仅抑制硝化细菌的作用,而且可直接光降解象硝酸盐这样的简单无机物种。UV-B对海洋中硫循环的影响可能会改变COS和二甲基硫(DMS)的海-气释放,这两种气体可分别在平流层和对流层中被降解为硫酸盐气溶胶。
对材料的影响
因平流层臭氧损耗导致阳光紫外辐射的增加会加速建筑、喷涂、包装及电线电缆等所用材料,尤其是高分子材料的降解和老化变质。特别是在高温和阳光充足的热带地区,这种破坏作用更为严重。由于这一破坏作用造成的损失估计全球每年达到数十亿美元。无论是人工聚合物,还是天然聚合物以及其它材料都会受到不良影响。当这些材料尤其是塑料用于一些不得不承受日光照射的场所时,只能靠加入光稳定剂或进行表面处理以保护其不受日光破坏。阳光中UV-B辐射的增加会加速这些材料的光降解,从而限制了它们的使用寿命。研究结果已证实短波UV-B辐射对材料的变色和机械完整性的损失有直接的影响。
在聚合物的组成中增加现有光稳定剂的用量可能缓解上述影响,但需要满足下面三个条件:①在阳光的照射光谱发生了变化即UV-B辐射增加后,该光稳定剂仍然有效;②该光稳定剂自身不会随着UV-B辐射的增加被分解掉;③经济可行。利用光稳定性更好的塑料或其他材料替代现有材料是一个正在研究中的问题。然而,这些方法无疑将增加产品的成本。而对于许多正处在用塑料替代传统材料阶段的发展中国家来说,解决这一问题更为重要和迫切。
对空气的影响
平流层臭氧的变化对对流层的影响是一个十分复杂的科学问题。一般认为平流层臭氧的减少的一个直接结果是使到达低层大气的UV-B辐射增加。由于UV-B的高能量,这一变化将导致对流层的大气化学更加活跃。首先,在污染地区如工业和人口稠密的城市,即氮氧化物浓度较高的地区,UV-B的增加会促进对流层臭氧和其它相关的氧化剂如过氧化氢(H2O2)等的生成,使得一些的城市地区臭氧超标率大大增加。而与这些氧化剂的直接接触会对人体健康、陆生植物和室外材料等产生各种不良影响。在那些较偏远的地区,即NOx的浓度较低的地区,臭氧的增加较少甚至还可能出现臭氧减少的情况。但不论是污染较严重的地区还是清洁地区,H2O2和OH自由基等氧化剂的浓度都会增加。其中H2O2浓度的变化可能会对酸沉降的地理分布带来影响,结果是污染向郊区蔓延,清洁地区的面积越来越少。
其次,对流层中一些控制着大气化学反应活性的重要微量气体的光解速率将提高,其直接的结果是导致大气中重要自由基浓度如OH基的增加。OH自由基浓度的增加意味着整个大气氧化能力的增强。由于OH自由基浓度的增加会使甲烷和CFC替代物如HCFCS和HFCs的浓度成比例的下降,从而对这些温室气体的气候效应产生影响。
而且,对流层反应活性的增加还会导致颗粒物生成的变化,例如云的凝结核,由来自人为源和天然源的硫(如氧硫化碳和二甲基硫)的氧化和凝聚形成。尽管对这些过程了解的还不十分清楚,但平流层臭氧的减少与对流层大气化学及气候变化之间复杂的相互关系正逐步被揭示。