为您找到与高二数学八大定理相关的共200个结果:
余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定,是勾股定理在一般三角形情形下的推广。下面是读文网小编收集整理的高二数学《余弦定理》训练题目及其参考答案以供大家学习。
1.在△ABC中,已知a=4,b=6,C=120°,则边c的值是()
A.8
B.217
C.62
D.219
解析:选D.根据余弦定理,c2=a2+b2-2abcos C=16+36-2×4×6cos 120°=76,c=219.
2.在△ABC中,已知a=2,b=3,C=120°,则sin A的值为()
A.5719 B.217
C.338 D.-5719
解析:选A.c2=a2+b2-2abcos C
=22+32-2×2×3×cos 120°=19.
∴c=19.
由asin A=csin C得sin A=5719.
3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________.
解析:设底边边长为a,则由题意知等腰三角形的腰长为2a,故顶角的余弦值为4a2+4a2-a22•2a•2a=78.
答案:78
4.在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状.
解:法一:根据余弦定理得
b2=a2+c2-2accos B.
∵B=60°,2b=a+c,
∴(a+c2)2=a2+c2-2accos 60°,
整理得(a-c)2=0,∴a=c.
∴△ABC是正三角形.
法二:根据正弦定理,
2b=a+c可转化为2sin B=sin A+sin C.
又∵B=60°,∴A+C=120°,
∴C=120°-A,
∴2sin 60°=sin A+sin(120°-A),
整理得sin(A+30°)=1,
∴A=60°,C=60°.
∴△ABC是正三角形.
课时训练
一、选择题
1.在△ABC中,符合余弦定理的是()
A.c2=a2+b2-2abcos C
B.c2=a2-b2-2bccos A
C.b2=a2-c2-2bccos A
D.cos C=a2+b2+c22ab
解析:选A.注意余弦定理形式,特别是正负号问题.
2.(2011年合肥检测)在△ABC中,若a=10,b=24,c=26,则最大角的余弦值是()
A.1213 B.513
C.0 D.23
解析:选C.∵c>b>a,∴c所对的角C为最大角,由余弦定理得cos C=a2+b2-c22ab=0.
3.已知△ABC的三边分别为2,3,4,则此三角形是()
A.锐角三角形 B.钝角三角形
C.直角三角形 D.不能确定
解析:选B.∵42=16>22+32=13,∴边长为4的边所对的角是钝角,∴△ABC是钝角三角形.
4.在△ABC中,已知a2=b2+bc+c2,则角A为()
A.π3 B.π6
C.2π3 D.π3或2π3
解析:选C.由已知得b2+c2-a2=-bc,
∴cos A=b2+c2-a22bc=-12,
又∵0
5.在△ABC中,下列关系式
①asin B=bsin A
②a=bcos C+ccos B
③a2+b2-c2=2abcos C
④b=csin A+asin C
一定成立的有()
A.1个 B.2个
C.3个 D.4个
解析:选C.由正、余弦定理知①③一定成立.对于②由正弦定理知sin A=sin Bcos C+sin Ccos B=sin(B+C),显然成立.对于④由正弦定理sin B=sin Csin A+sin Asin C=2sin Asin C,则不一定成立.
6.在△ABC中,已知b2=ac且c=2a,则cos B等于()
A.14 B.34
C.24 D.23
解析:选B.∵b2=ac,c=2a,
∴b2=2a2,
∴cos B=a2+c2-b22ac=a2+4a2-2a22a•2a
=34.
二、填空题
7.在△ABC中,若A=120°,AB=5,BC=7,则AC=________.
解析:由余弦定理,
得BC2=AB2+AC2-2AB•AC•cosA,
即49=25+AC2-2×5×AC×(-12),
AC2+5AC-24=0.
∴AC=3或AC=-8(舍去).
答案:3
8.已知三角形的两边分别为4和5,它们的夹角的余弦值是方程2x2+3x-2=0的根,则第三边长是________.
解析:解方程可得该夹角的余弦值为12,由余弦定理得:42+52-2×4×5×12=21,∴第三边长是21.
答案:21
9.在△ABC中,若sin A∶sin B∶sin C=5∶7∶8,则B的大小是________.
解析:由正弦定理,
得a∶b∶c=sin A∶sin B∶sin C=5∶7∶8.
不妨设a=5k,b=7k,c=8k,
则cos B=5k2+8k2-7k22×5k×8k=12,
∴B=π3.
答案:π3
三、解答题
10.已知在△ABC中,cos A=35,a=4,b=3,求角C.
解:A为b,c的夹角,
由余弦定理得a2=b2+c2-2bccos A,
∴16=9+c2-6×35c,
整理得5c2-18c-35=0.
解得c=5或c=-75(舍).
由余弦定理得cos C=a2+b2-c22ab=16+9-252×4×3=0,
∵0°
11.在△ABC中,a、b、c分别是角A、B、C所对的边长,若(a+b+c)(sin A+sin B-sin C)=3asin B,求C的大小.
解:由题意可知,
(a+b+c)(a+b-c)=3ab,
于是有a2+2ab+b2-c2=3ab,
即a2+b2-c22ab=12,
所以cos C=12,所以C=60°.
12.在△ABC中,b=asin C,c=acos B,试判断△ABC的形状.
解:由余弦定理知cos B=a2+c2-b22ac,代入c=acos B,
得c=a•a2+c2-b22ac,∴c2+b2=a2,
∴△ABC是以A为直角的直角三角形.
又∵b=asin C,∴b=a•ca,∴b=c,
∴△ABC也是等腰三角形.
综上所述,△ABC是等腰直角三角形.
浏览量:2
下载量:0
时间:
在高二数学考试之后,要对试卷进行一次分析。下面是读文网小编网络整理的高二数学期末考试试卷分析的内容以供大家学习参考。
1.高二数学试卷分析
浏览量:2
下载量:0
时间:
在高二期中考试之后,对试卷做一次分析是很有必要的。下面是读文网小编为大家带来的高二数学期中考试试卷分析的内容,希望对你有帮助。
一、试卷分析
1、本次考试是多校联考统一命题,本次考试范围是数学选修2-2的全部教学知识,分为五个大块:(1)推理与证明(占41分,3个选择题,2个填空题,2个解答题)(2)变化率(占10分,2个选择题,1个填空题),(3)导数的应用(占41分,3个选择题,2个解答题),(4)定积分(占10分,2个选择题,1个填空题),(5)数系的扩充与复数的引入(占18分,2个选择题,1个解答题)。考试时间:100分钟,总分120分。考查到分类讨论的思想、数形结合思想、数学建模的思想、构造法、推理与证明部分的三个重点方法:分析法、数学归纳法、反证法无一例外,数学猜想问题就占了23分,复数的计算和几何意义问题均有涉猎。
2、年级成绩情况:试卷满分120分,理科年级平均分57.17分,及格率25.79%,及格人数49人,优秀率0,优秀人数0人,过差率13.68%,过差人数26人,最高分101分,最低分6分。
3、考情分析
从试卷的整体分析可知,要求比较高,尤其是在思维能力方面的考查,要求更高,试卷中的每一道题都很不错,对学生的数学阅读能力、计算能力、作图能力、综合分析能力、解决问题的能力得以全面的考查。即使学生考前认真做了全面的复习,但是要想取得好的成绩,难度还是很大的。导数2个解答题相当于高考难度,归纳数列的通项公式并用数学归纳法证明的解答题也相当于高考难度,占32分,学生的得分率不高,以4、7班为例,4班的17题对了22人,19题对了1人,22题无一人得满分。7班的17题对了38人,19题对了6人,22题无一人得满分。而考数学思想的20题4班2人对,7班5人对,21题4班对5人,7班对8人。普通班与重点班的差别不大。但是试卷中还有相当一部分的题目都是讲过的题,甚至不乏原题,考查的都是基础知识、基本规律,也是选修2-3最基本的要求,但是考试的成绩却不理想,可见是学生对知识的掌握不扎实。有些问题我们老师讲了又讲,可学生并未掌握,或者说掌握的不够扎实,不够全面。
二、改进措施
落实教学目标,提高课外作业质量,争取在45分钟内完成教学任务,向45分钟要实效。对于重点知识点借助辅导课、晚自习时间每周自查一次,给学生留出独立思考、学习的时间,同时教师也要改变教学观念,不能再满堂灌,把更多的时间还给学生,要让学生有一定的时间自主学习,培养学生自主学习的习惯和能力,每节课至少留出三分之一的时间用于预习和进行必要的练习,教学中真正让学生打好基础,提高能力。
三、学法建议
我们一定要抓学生的学习习惯。第一,认真听课的习惯。高中数学的学习,一定要重视课堂学习,充分体现学生在课堂上的主体地位,充分调动思维,使其全面运转,领教教师教学之精髓,主动和教师进行课堂互动交流。
第二。自觉学习的习惯。无论学生的数学基础如何,建议都要以全新的姿态对待新模块的学习,至少要注意养成良好的学习习惯:独立思考的习惯,对于书本中的讲解、例题、习题、高考真题,在老师讲解之前应独立思考,尽量完成,不要直接照抄参考答案。总结归纳的习惯,虽然每单元均有归纳总结,但建议你先做此项工作,然后对照修订完善。收集错题的习惯,当你在作业、考试、训练中出现错题时,建议你将其收录整理、汇编、长期坚持,一定收益匪浅。
第三,坚持学习的习惯。高中学习任务重,难度高,常遇困难在所难免,切不可只是一时热情而非持之以恒,必须长期刻苦地强化训练,深入细致地独立思考,坚持不懈地全面领悟,这样,你的数学成绩才会有长足的进步。
总之,后半学期的工作应做细、做实、做好,只要我们执着地追求,不放弃每个细节,备课、上课、作业布置、批改、训练、考试、讲评等,一定能提高学生学习的实效性。
浏览量:2
下载量:0
时间:
随着期中考试的结束,做一些试卷的分析是很重要的。下面是读文网小编网络整理的高二数学期中质量分析的内容以供大家学习参考。
3.高二数学期中考试的复习方法
浏览量:3
下载量:0
时间:
复习备考不仅仅是对学习知识的一个巩固,更是为学习下一阶段打好基础,特别是高中数学知识点的复习更重要,高中数学知识点多是“多杂难”,有限的时间里如何做到最大效率的复习便是我们首先要学会的。下面是读文网小编网络整理的高二数学复习的3种方法以供大家学习参考。
一、答题和时间的关系
整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很亏。
高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。
二、快与准的关系
在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
三、审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如至少,a>0,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。
四、会做与得分的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现会而不对对而不全的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的跳步,使很多人丢失1/3以上得分,代数论证中以图代证,尽管解题思路正确甚至很巧妙,但是由于不善于把图形语言准确地转译为文字语言,得分少得可怜;再如去年理17题三角函数图像变换,许多考生心中有数却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,会做的题才能得分。
五、难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打持久战,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从一题把关转为多题把关,因此解答题都设置了层次分明的台阶,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有咬手的关卡,看似难做的题也有可得分之处。所以考试中看到容易题不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
浏览量:4
下载量:0
时间:
高二数学的学习很重要,它将在很大程度上影响学生们的高考!下面是读文网小编整理的高二数学学习方法以供大家阅读。
高考题是最好的习题,它在考查知识点时的切入点新而不俗,它正确地控制了对所考查的知识点的难度。解答一定的高考题,有助于把握高考对该知识点的难度要求;有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,防止做偏题、怪题。特别在排列组合二项式定理、复数、立体几何、极坐标、三角部分的高考题,难度不大,而平时所见的复习资料中,有相当的习题已超出高考难度,其实,高考题目中这几部分的习题复习时都能做,并不是很难,更不可怕,可见常做高考题,会克服对高考题的恐惧感。增强将来决胜高考的自信心。
浏览量:3
下载量:0
时间:
在高二年级的数学学习中,我们应该怎么样去促进自己的学习呢?下面是读文网小编网络整理的高二年级数学学习方法以供大家学习参考。
一、温故法
学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。
二、操作法
对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。
三、类比法
这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。
四、喻理法
为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念
五、置疑法
这种方法是通过揭示教学自身的矛盾来引入概念,以突出引进新概念的必要性和合理性,调动孩子了解新概念的强烈的动机和愿望。
六、创境法
如在讲相遇问题时,为让孩子对相向运动的各种可能的情况有所感受,可以从研究"鼓掌时两只手怎样运动"开始。通过拍手体验,在边问、边议中逐步讲解。实践证明,如此使孩子犹如身临其境去体验并理解有关知识,能很快准确地掌握相关的数学概念。
浏览量:3
下载量:0
时间:
复习备考不仅仅是对学习知识的一个巩固,更是为学习下一阶段打好基础,特别是高中数学知识点的复习更重要,高中数学知识点多是“多杂难”,有限的时间里如何做到最大效率的复习便是我们首先要学会的。以下是由读文网小编收集整理的高二数学复习的3种方法,欢迎阅读!
一、温故法
学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。
二、操作法
对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。
三、类比法
这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。
四、喻理法
为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念
五、置疑法
这种方法是通过揭示教学自身的矛盾来引入概念,以突出引进新概念的必要性和合理性,调动孩子了解新概念的强烈的动机和愿望。
六、创境法
如在讲相遇问题时,为让孩子对相向运动的各种可能的情况有所感受,可以从研究"鼓掌时两只手怎样运动"开始。通过拍手体验,在边问、边议中逐步讲解。实践证明,如此使孩子犹如身临其境去体验并理解有关知识,能很快准确地掌握相关的数学概念。
浏览量:3
下载量:0
时间:
在高二的数学学习中给,你应该掌握怎么样的的学习方法和原则来提升自己的学习成绩呢?以下是由读文网小编收集整理的高二数学学习八大法则,欢迎阅读!
复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。
浏览量:4
下载量:0
时间:
对于高二年级的数学学习中,我们应该怎么样的去促进自己的学习呢?这将在很大程度上影响着我们的高考成绩!下面是读文网小编网络整理的高二数学学习方法与技巧以供大家学习参考。
一、抓好基础。
数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。
那么如何抓基础呢?
1、看课本;
2、在做练习时遇到概念题是要对概念的内涵和外延再认识,注意从不同的侧面去认识、理解概念。
3、理解定理的条件对结论的约束作用,反问:如果没有该条件会使定理的结论发生什么变化?
4、归纳全面的解题方法。要积累一定的典型习题以保证解题方法的完整性。
5、认真做好我们网校同步课堂里面的每期的练习题,采用循环交替、螺旋式推进的方法,克服对基本知识基本方法的遗忘现象。
二、制定好计划和奋斗目标。
复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。
三、严防题海战术,克服盲目做题而不注重归纳的现象。
做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。
浏览量:3
下载量:0
时间:
在高二年级的数学学习上有困难的学生们,应该怎么样的想办法去把自己的学习成绩提升上去呢?下面是读文网小编整理的高二数学学习针对性措施以供大家阅读。
一、学习问题自我评价
每一个学习不良者并不一定真的了解自己的问题之所在,要想对症下药,解决问题,对学习问题进行自我评价便尤其显得重要了。对学习问题可主要从如下几方面进行自我评价:
l、时间安排问题
学习不良者应该反省下列几个问题:(1)是否很少在学习前确定明确的目标,比如要在多少时间里完成多少内容。(2)学习是否常常没有固定的时间安排。(3)是否常拖延时间以至于作业都无法按时完成。(4)学习计划是否是从来都只能在开头的几天有效。(5)一周学习时间是否不满10小时。(6)是否把所有的时问都花在学习上了。
2、注意力问题
(1)注意力完全集中的状态是否只能保持10至15分钟。(2)学习时,身旁是否常有小说、杂志等使我分心的东西。(3)学习时是否常有想入非非的体验。(4)是否常与人边聊天边学习。
3、学习兴趣问题
(1)是否一见书本头就发胀。(2)是否只喜欢文科,而不喜欢理科。(3)是否常需要强迫自己学习。(4)是否从未有意识地强化自己的学习行为。
4、学习方法问题
(1)是否经常采用题海战来提高解题能力。(2)是否经常采用机械记忆法。(3)是否从未向学习好的同学讨教过学习方法。(4)是否从不向老师请教问题。(5)是否很少主动钻研课外辅助读物。
一般而言,回答上述问题,肯定的答案(回答“是”)越多,学习的效率越低。每个有学习问题的学生都应从上述四类问题中列出自己主要毛病,然后有针对性地进行治疗。例如一个学生毛病是这样的:在时间安排上,他总喜欢把任务拖到第二夫去做;在注意力问题上,他总喜欢在寝室里边与人聊天边读书;在学习兴趣上,他对专业课不感兴趣,对旁系的某些课却很感兴趣;在学习方法上主要采用机械记忆法。这位学生的病一列出来,我们就能够采取有效的治疗措施了。
浏览量:2
下载量:0
时间:
数学学习的心理障碍,是指影响、制约、阻碍中学生积极主动和持久有效地学习数学知识、训练创造性思维、发展智力、培养数学自学能力和自学习惯的一种心理状态,也即是中学生在数学学习过程中因"困惑"、"曲解"或"误会"而产生的一种消极心理现象。这主要会表现在哪些方面呢?下面是读文网小编网络整理的高二数学学习心理障碍以供大家学习参考。
一、学习问题自我评价
每一个学习不良者并不一定真的了解自己的问题之所在,要想对症下药,解决问题,对学习问题进行自我评价便尤其显得重要了。对学习问题可主要从如下几方面进行自我评价:
l、时间安排问题
学习不良者应该反省下列几个问题:(1)是否很少在学习前确定明确的目标,比如要在多少时间里完成多少内容。(2)学习是否常常没有固定的时间安排。(3)是否常拖延时间以至于作业都无法按时完成。(4)学习计划是否是从来都只能在开头的几天有效。(5)一周学习时间是否不满10小时。(6)是否把所有的时问都花在学习上了。
2、注意力问题
(1)注意力完全集中的状态是否只能保持10至15分钟。(2)学习时,身旁是否常有小说、杂志等使我分心的东西。(3)学习时是否常有想入非非的体验。(4)是否常与人边聊天边学习。
3、学习兴趣问题
(1)是否一见书本头就发胀。(2)是否只喜欢文科,而不喜欢理科。(3)是否常需要强迫自己学习。(4)是否从未有意识地强化自己的学习行为。
4、学习方法问题
(1)是否经常采用题海战来提高解题能力。(2)是否经常采用机械记忆法。(3)是否从未向学习好的同学讨教过学习方法。(4)是否从不向老师请教问题。(5)是否很少主动钻研课外辅助读物。
一般而言,回答上述问题,肯定的答案(回答“是”)越多,学习的效率越低。每个有学习问题的学生都应从上述四类问题中列出自己主要毛病,然后有针对性地进行治疗。例如一个学生毛病是这样的:在时间安排上,他总喜欢把任务拖到第二夫去做;在注意力问题上,他总喜欢在寝室里边与人聊天边读书;在学习兴趣上,他对专业课不感兴趣,对旁系的某些课却很感兴趣;在学习方法上主要采用机械记忆法。这位学生的病一列出来,我们就能够采取有效的治疗措施了。
浏览量:3
下载量:0
时间:
在做数学题目的时候,你有什么样的方法策略使得自己的错误率降低呢?以下是由读文网小编收集整理的高二数学题解法指导,欢迎阅读!
一、学习问题自我评价
每一个学习不良者并不一定真的了解自己的问题之所在,要想对症下药,解决问题,对学习问题进行自我评价便尤其显得重要了。对学习问题可主要从如下几方面进行自我评价:
l、时间安排问题
学习不良者应该反省下列几个问题:(1)是否很少在学习前确定明确的目标,比如要在多少时间里完成多少内容。(2)学习是否常常没有固定的时间安排。(3)是否常拖延时间以至于作业都无法按时完成。(4)学习计划是否是从来都只能在开头的几天有效。(5)一周学习时间是否不满10小时。(6)是否把所有的时问都花在学习上了。
2、注意力问题
(1)注意力完全集中的状态是否只能保持10至15分钟。(2)学习时,身旁是否常有小说、杂志等使我分心的东西。(3)学习时是否常有想入非非的体验。(4)是否常与人边聊天边学习。
3、学习兴趣问题
(1)是否一见书本头就发胀。(2)是否只喜欢文科,而不喜欢理科。(3)是否常需要强迫自己学习。(4)是否从未有意识地强化自己的学习行为。
4、学习方法问题
(1)是否经常采用题海战来提高解题能力。(2)是否经常采用机械记忆法。(3)是否从未向学习好的同学讨教过学习方法。(4)是否从不向老师请教问题。(5)是否很少主动钻研课外辅助读物。
一般而言,回答上述问题,肯定的答案(回答“是”)越多,学习的效率越低。每个有学习问题的学生都应从上述四类问题中列出自己主要毛病,然后有针对性地进行治疗。例如一个学生毛病是这样的:在时间安排上,他总喜欢把任务拖到第二夫去做;在注意力问题上,他总喜欢在寝室里边与人聊天边读书;在学习兴趣上,他对专业课不感兴趣,对旁系的某些课却很感兴趣;在学习方法上主要采用机械记忆法。这位学生的病一列出来,我们就能够采取有效的治疗措施了。
浏览量:3
下载量:0
时间:
高中数学的内容多,抽象性、理论性强,因此不少同学进入高中之后很不适应。进校后,代数里首先遇到的是理论性很强的函数,再加上立体几何,空间概念、空间想象能力又不可能一下子就建立起来,这就使一些初中数学学得还不错的同学不能很快地适应而感到困难,以下就怎样学好高中数学谈几点意见和建议。下面是有读文网小编为你整理的高二数学学习方法指导 ,希望能够帮助到你!
一、温故法
学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。
二、操作法
对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。
三、类比法
这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。
四、喻理法
为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念
五、置疑法
这种方法是通过揭示教学自身的矛盾来引入概念,以突出引进新概念的必要性和合理性,调动孩子了解新概念的强烈的动机和愿望。
六、创境法
如在讲相遇问题时,为让孩子对相向运动的各种可能的情况有所感受,可以从研究"鼓掌时两只手怎样运动"开始。通过拍手体验,在边问、边议中逐步讲解。实践证明,如此使孩子犹如身临其境去体验并理解有关知识,能很快准确地掌握相关的数学概念。
浏览量:2
下载量:0
时间:
一份设计良好的试题卷能够在很大程度上帮助学生们去检验他们在学习上的漏洞并提升他们的学习成绩!下面是读文网小编整理的2017高二数学期末试卷以供大家阅读。
一、选择题(每小题5分,共12个小题,本题满分60分)
1.B 2.B 3.C 4.C 5. D 6.C 7.D 8.C 9.B 10.C 11.D 12.A
二、填空题(每小题5分,共4小题,满分20分)
13. 14. 15. 16.
三.解答题(共70分,需要写出解答过程或证明步骤)
17.(1) 的图象过点 ,,又由已知得 是 的两个根,
故 ………5分
(2)由已知可得 是 的极大值点, 是 的极小值点
…………10分
18. ∵方程 所表示的曲线为焦点在y轴上的椭圆
∴ ………………3分
解得: ………………5分
(2)∵命题P是命题q的充分不必要条件
∴ 是不等式 = 解集的真子集…10分
法一:因方程 = 两根为 .
故只需 ………………12分
法二:令 ,因 ……………10分
解得: ………………12分
19.解:p为真命题⇔f′(x)=3x2-a≤0在[-1,1]上恒成立⇔a≥3x2在[-1,1]上恒成立⇔a≥3.
q为真命题⇔ 恒成立⇔ ………………6分
由题意p和q有且只有一个是真命题.
p真q假⇔ ⇔ ;p假q真⇔ .
综上所述: ………………12分
20.解:(1)由已知双曲线C的焦点为
由双曲线定义
所求双曲线为 …………6分
(2)设 ,因为 、 在双曲线上
①-②得
弦AB的 方程为 即
经检验 为所求直线方程. …………12分
21.解:(1)过P作 轴的垂线且垂足为N,由题意可知而 , ,
化简得 为所求的方程。……4分
(2)设 ,联立 得而 , ……8分
(3)因为 是曲线C上一点,切点为 ,由 求导得当 时
则直线方程为 即 是所求切线方程.……12分
22.解:函数 的定义域为 ,
(Ⅰ)当 时,
∴ 在 处的切线方程为 …………3分
(Ⅱ)
所以当 ,或 时, ,当 时 ,
故当 时,函数 的单调递增区间为 ;
单调递减区间为 …………6分
(Ⅲ)当 时,由(Ⅱ)知函数 在区间 上为增函数,
所以函数 在 上的最小值为
若对于 使 成立 在 上的最小值不大于 在[1,2]上的最小值 (*)
又①当 时, 在上 为增函数,与(*)矛盾
②当 时, ,由 及 得,
③当 时, 在上 为减函数,, 此时综上所述, 的取值范围是 …………12分
看过“2017高二数学期末试卷”
浏览量:3
下载量:0
时间:
有没有一套试题卷在考试前能够测验出你的成绩情况的呢?让我们来做一下这套试卷吧!以下是由读文网小编收集整理的高二数学选修4-4单元测试题,欢迎阅读!
1.极坐标方程分别是 和 的两个圆的圆心距是 .
2.已知圆的极坐标方程 ,直线的极坐标方程为 ,则圆心到直线的距离为_________.
3.在极坐标系下,直线 与圆 的公共点个数是_______.
4.在极坐标系中,过圆 的圆心,且垂直于极轴的直线的极坐标方程为 .
5.在极坐标系中,圆 的极坐标方程是 .现以极点为原点,以极轴为 轴的正半轴建立直角坐标系,则圆 的半径是 ,圆心的直角坐标是 .
6.在极坐标系中,若过点 且与极轴垂直的直线交曲线 于A、B两点,则________ _.
7. 设 、 分别是曲线 和 上的动点,则 、 的最小距离是 .
8.已知曲线 、 的极坐标方程分别为 , ( ).则曲线 与 交点的极坐标为 .
9.在极坐标系中,过点 作圆 的切线,则切线的极坐标方程是 .
10.在极坐标系下,已知直线 的方程为 ,则点 到直线 的距离为__________.
11.在极坐标系中,点 到直线 : 的距离为__________.
12.过点 且平行于极轴的直线的极坐标方程为 .
13.在极坐标系中,点 的坐标为 ,曲线 的方程为 ,则 ( 为极点)所在直线被曲线 所截弦的长度为 .
14.在极坐标系下,圆 的圆心到直线 的距离是 .
15.已知直线的极坐标方程为 ,则点(0,0)到这条直线的距离是 .
16.在极坐标系中,曲线 截直线 所得的弦长为 .
17.在极坐标系中,点 关于极点的对称点的极坐标是.
18.若直线 与直线 垂直,则常数 = .
19. 在直角坐标系中,曲线 的极坐标方程为 ,写出曲线 的直角坐标方程____ ____.
20.在极坐标系中,已知两点 、 的极坐标分别为 , ,则△ (其中为极点)的面积为 .
21.在极坐标系中,曲线 截直线 所得的弦长等于 .
22.在极坐标系( , )( )中,曲线 与 的交点的极坐标为______________.
23.点M,N分别是曲线 上的动点,则|MN|的最小值是 .
24.在极坐标系中, 圆 上的点到直线 的距离的最大值是 .
25.在极坐标系中,直线 被曲线 : 所截得弦的中点的极坐标为 .
26.以极坐标系中的点 为圆心, 为半径的圆的直角坐标方程是 .
27. 圆C的极坐标方程 化为直角坐标方程为 ,该圆的面积为 .
28.同时给出极坐标系与直角坐标系,且极轴为 ,则极坐标方程 化为对应的直角坐标方程是 .
29.在极坐标系中,直线 的方程为 ,则点 到直线 的距离为 __ .
30.在极坐标系中,点 与点 关于直线 对称,则 =____________.
31.在极坐标系中,圆 的圆心的极坐标是 ,它与方程
所表示的图形的交点的极坐标是 .
32.在极坐标系中,点 和点 的极坐标分别为 和 , 为极点,则 的面积= .
33.在极坐标系中,和极轴垂直相交的直线 与圆 相交于 、 两点,若 ,则直线 的极坐标方程为 .
34.已知直线的极坐标方程为 ,则点 到这条直线的距离为____.
35.两直线 , 的位置关系是__________. (判断垂直或平行或斜交)
36.在极坐标系中, 是圆,则点A 到圆心C的距离是 .
37.在极坐标系中,曲线 的中心与点 的距离为 .
38.在极坐标系下,圆 与圆 的公切线条数为 .
39.在极坐标系 中,曲线 与的交点的极坐标为 .
40.在极坐标系中,直线 的方程为 ,则点 到直线 的距离为 .
看过“高二数学选修4-4单元测试题”
浏览量:13
下载量:0
时间:
面对即将到来的中考,教师们要如何准备呢?接下来是读文网小编为大家带来的中考数学复学面几何六十个定理,供大家参考。
1、勾股定理(毕达哥拉斯定理)
2、射影定理(欧几里得定理)
3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分
4、四边形两边中心的连线的两条对角线中心的连线交于一点
5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点
8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL
9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,
11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上
12、库立奇_大上定理:(圆内接四边形的九点圆)
圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD
18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上
19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD
20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,
21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。
22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。
23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1
24、梅涅劳斯定理的逆定理:(略)
25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。
26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线
27、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.
28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M
29、塞瓦定理的逆定理:(略)
30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
32、西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)
33、西摩松定理的逆定理:(略)
34、史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心。
35、史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上。这条直线被叫做点P关于△ABC的镜象线。
36、波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2∏)。
37、波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点
38、波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。
39、波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点
40、波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点。
41、关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。
42、关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。
43、卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线。
44、奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
45、清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
46、他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)
47、朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。
48、九点圆定理:三角形三边的中点,三高的垂足和三个欧拉点[连结三角形各顶点与垂心所得三线段的中点]九点共圆[通常称这个圆为九点圆[nine-point circle],或欧拉圆,费尔巴哈圆。
49、一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。
50、康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。
51、康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M、N两点关于四边形ABCD的康托尔线。
52、康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M、N、L三点关于四边形ABCD的康托尔点。
53、康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上。这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线。
54、费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。
55、莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。
56、牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。
57、牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。
58、笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
59、笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
60、布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线共点。
60、巴斯加定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或延长线的)交点共线
看过中考数学学平面几何六十个定理的还看了:
浏览量:3
下载量:0
时间: