为您找到与高三文科数学知识点总结word版免费相关的共200个结果:
文科数学有哪些知识点需要我们掌握呢,高考文科数学要怎么学好知识点拿高分呢?下面是读文网小编网络整理的2017届高考文科数学知识点总结以供大家学习。
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、 “充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数 、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
考点五:立体几何与空间向量
一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
考点六:解析几何
一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。
考点七:算法 复数 推理与证明
高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解. 算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问.
考点八:概率与统计
概率:由于文理选修内容的不同,有关概率内容在高考中所占比重不大,试题中具有一定的灵活性、机动性。重点以互斥事件、古典概型的概率计算为主,以实际应用形式出现的多以选择题、填空题为主。对于理科,结合选修中排列、组合的知识对随机事件进行考察,多以解答题的形式出现。几何概型是近年来新增考察内容之一,题目难度不大,但需要准确理解题意,利用图形分析问题,在高考中多以选择题、填空题形式出现。
统计:随机抽样、用样本估计总体是基本题(中、低档题为主),多以选择题、填空题的形式出现,以实际问题为背景,综合考查学生应用基础知识、解决实际问题的能力,热点问题是分层抽样、系统抽样、频率分布直方图和用样本的数字特征估计总体的数字特征,文科试题中会出现解答题.
概率与统计(理):重点以随机变量及其分布列的概念和基本计算为主,题型以选择、填空为主,有时也以解答题形式出现,即以实际情景为主,建立合适的分布列,通过均值和方差解释实际问题;
统计案例:主要包括回归分析、独立性检验的基本思想和初步应用,是教材新增内容,高考中必须在试题之前给出公式后作为选择或填空题.
浏览量:2
下载量:0
时间:
无论你是理科生还是文科生,数学公式,你必须掌握。下面就让读文网小编给大家分享一些高考文科必背数学公式吧,希望能对你有帮助!
正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径
余弦定理:a2=b2+c2-2bc*cosA
sin(A+B)=sinC
sin(A+B)=sinAcosB+sinBcosA
sin(A-B)=sinAcosB+sinBcosA
sin2A=2sinAcosA
cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2
tan2A=2tanA/[1-(tanA)2]
(sinA)2+(cosA)2=1
浏览量:3
下载量:0
时间:
对于地理这么一个知识点众多的学科,我们需要一种高效率的学习方法去总结与归纳地里的知识要点!下面是读文网小编网络整理的高三地理必备知识点总结,相信这些文字会对你有所帮助!
1.经纬度计算:经度差与地方时差算经度——地方时每相差1小时,经度相差1°;纬差法与正午太阳高度算纬度——正午太阳相差多小,纬度相差多少;北极星的仰角即地平高度等于当地地理纬度;经纬线上长度算经纬度——1°经线长111km/1°纬线长111cosфkm(ф为纬度)。
2.比例尺计算:比例尺=图上距离/实地距离。
3.海拔和相对高度的计算:等高线图上任意两地相对高度的计算可根据(n-1)d≤⊿h<(n+1)d(其中n表示两地间不同等高线的条数,d表示等高距)。
4.流域面积的计算:作出流域的分水线即山脊线,由分水岭所围的区域即为流域的范围;因图形不规范,计算时一般算出图幅面积后,再分析流域面积占图幅面积的比重,相乘即可。
5.有关时间计算:①某地时区数=该地经度÷15,对商取整数部分,尾数部分四舍五入;②根据各时区中央经线的地方时即为本时区区时,相邻的两个时区的区时相差1小时,即求某地区区时=已知地区时±两地时区,注意东加西减;③根据东早西晚,经度每相差15°,地方时相差1小时。即求某地地方时=已知某地地方时±(两地经度差×4分钟/1°),注意东加西减;④日期界线有两条,自然界线即地方时0:00经线,以东早一天,为新的一天,以西晚一天,为旧的一天;人为界线即国际日期变更线,也就是180°经线(但两者并不完全重合),规定日界线以东晚一天,为旧的一天,以西早一天,为新的一天;新的一天的范围即从地方时0:00经线向东到180°经线的范围;新的一天的范围=180°经线的地方时×15。⑤日照图上晨线与赤道交点所在经线地方时为6:00,昏线与赤道交点所在经线的地方时为18:00;晨昏线与某纬线的切点所在经线为0:00(切点为极昼)或12:00(切点为极夜)。
6.地球自转速度计算:①地球上除南北极点外,其它各地角速度都相等,大致每小时15°;②地球上赤道处线速度最大,南北极点为0,任意纬线上线速度 Vф=V赤道cosф=1670cosфkm/h;③同步卫星的角速度与地球上除极点外的任一点都相等,线速度比对应地面上的点大。
7.太阳高度及正午太阳高度计算:①太阳高度由太阳直射点(h=90°)向四周以同心圆的形式递减,到晨昏上为0,昼半球h>0°,夜半球h& lt;0°,晨昏上h=0°。解题方法一定要注意把等太阳高度线图转化为日照图,关键是注意中心点或为太阳直射点,或为夜半球中点。
②正午太阳高度的分布是由太阳直射点所在纬度向南北两侧递减,计算时一般采用纬差法,即两地纬度相差多少,正午太阳高度也相差多少。
8.昼夜长短计算:某地昼长等于该地所在纬线圈昼弧度数除以15°;日出时刻=12-昼长/2=夜长/2;日落时刻=12+昼长/2=24-夜长 /2;极昼区昼长为24小时,极夜区昼长为0小时,赤道上各地昼长永远是12小时,两分日全球各地昼长均为12小时;纬度相同,昼夜长短相等,日出日落时刻相同;不同半球相同纬度的两地昼夜长短相反,即某地昼长=对应另一半球相同纬度大小地的夜长。
9.太阳直射点的确定:①直射点经度即太阳高度最大(太阳上中天)的经线,地方时12:00的经线;②直射点纬度即正午太阳高度为90°的纬线,直射点的纬度大小与极昼或极夜出现的最低纬度大小互余,直射点纬度大小等于极昼的极点的太阳高度(或正午太阳高度)大小。
10.温度计算:①对流层气温垂直递减率为每上升100m,气温下降0。6℃;②焚风效应气温垂直递增率,每下沉100m,气温增加1℃;③常温层以下地温垂直递增率,每往下100m,地温增加3℃。
11.气压梯度计算:单位距离间的气压差即为气压梯度,计算公式为△P/△d。
12.河流径流量的计算:径流量=降水量一蒸发量。
13.人口自然增长率的计算:自然增长率=出生率一死亡率。
14.人口密度的计算:人口密度=人口总量/分布面积。
15.城市化水平的计算:城市人口比重=城市人口数量/该地区人口总数。
16.运动器感觉昼夜更替周期的计算:T=360°/(地球自转角速度±运动器角速度),(同向相加,逆向相减)。
浏览量:2
下载量:0
时间:
中考即将到来,教师们要如何准备试题供学们们参考呢?接下来是读文网小编为大家带来的初三年级下册数学知识点归纳总结,供大家参考。
1 二次函数及其图像
二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:
一般式
y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;
顶点式
y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;
重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1*x2) (y1为截距)
求根公式
二次函数表达式的右边通常为二次三项式。
求根公式
x是自变量,y是x的二次函数
x1,x2=[-b±(√(b^2-4ac))]/2a
(即一元二次方程求根公式)
求根的方法还有因式分解法和配方法
在平面直角坐标系中作出二次函数y=2x的平方的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。
不同的二次函数图像
如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
注意:草图要有 1本身图像,旁边注明函数。
2画出对称轴,并注明X=什么
3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质
轴对称
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
顶点
2.抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b^2;)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2;-4ac=0时,P在x轴上。
开口
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
决定对称轴位置的因素
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号
当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
决定抛物线与y轴交点的因素
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
抛物线与x轴交点个数
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在
{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
特殊值的形式
7.特殊值的形式
①当x=1时 y=a+b+c
②当x=-1时 y=a-b+c
③当x=2时 y=4a+2b+c
④当x=-2时 y=4a-2b+c
二次函数的性质
8.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,
正无穷);②[t,正无穷)
奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+k[顶点式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)
对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X
的增大而减小
此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连
用)。
交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。
26.2 用函数观点看一元二次方程
1. 如果抛物线 与x轴有公共点,公共点的横坐标是 ,那么当 时,函数的值是0,因此 就是方程的一个根。
2. 二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。
26.3 实际问题与二次函数
在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。
看过初三年级下册数学知识点归纳总结的还看了:
浏览量:3
下载量:0
时间:
沪教版的数学期末考试就快要到来了,七年级的同学们要如何准备复习呢?接下来是读文网小编为大家带来的关于沪教版七年级数学的知识点总结,希望会给大家带来帮助。
第三章《一元一次方程》综合复习指导
【知识点归纳】
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c
(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1. 去分母(方程两边同乘各分母的最小公倍数)
2.去括号(按去括号法则和分配律)
3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4.合并(把方程化成ax = b (a≠0)形式)
5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ab).
六、用方程思想解决实际问题的一般步骤
1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2.设:设未知数(可分直接设法,间接设法)
3.列:根据题意列方程.
4.解:解出所列方程.
5.检:检验所求的解是否符合题意.
6.答:写出答案(有单位要注明答案)
七、有关常用应用类型题及各量之间的关系
1. 和、差、倍、分问题:
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.
2.等积变形问题:
“等积变形”是以形状改变而体积不变为前提.常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积.
3.劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变
4.数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.
5.工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
6.行程问题:
(1)行程问题中的三个基本量及其关系: 路程=速度×时间.
(2)基本类型有① 相遇问题;② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题.
7.商品销售问题
有关关系式:
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价×折扣率
8.储蓄问题
⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税
⑵ 利息=本金×利率×期数
本息和=本金+利息
利息税=利息×税率(20%)
浏览量:3
下载量:0
时间:
期末考试即将到来,七年级数学要复习的知识点有哪些呢?接下来是读文网小编为大家带来的关于七年级上册数学知识点总结,希望会给大家带来帮助。
第一章 丰富的图形世界
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形
生活中的立体图形
柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
正有理数 整数
有理数 零 有理数
负有理数 分数
2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
7、有理数的运算:
(1)五种运算:加、减、乘、除、乘方
多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。
有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两个数相加和为0。
有理数减法法则:减去一个数,等于加上这个数的相反数!
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0。
有理数除法法则:
两个有理数相除,同号得正,异号得负,并把绝对值相除。
0除以任何非0的数都得0。
注意:0不能作除数。
有理数的乘方:求n个相同因数a的积的运算叫做乘方。
正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。
(2)有理数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。
(3)运算律
加法交换律 加法结合律
乘法交换律 乘法结合律
乘法对加法的分配律
8、科学记数法
一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)
第三章 整式及其加减
1、代数式
用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数,如应写作;
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。
2、整式:单项式和多项式统称为整式。
①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。
注意:1.单独的一个数或一个字母也是单项式;2.单独一个非零数的次数是0;3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1。
②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。
3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
②同类项与系数无关,与字母的排列顺序无关;
③几个常数项也是同类项。
4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。
5、去括号法则
①根据去括号法则去括号:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。
②根据分配律去括号:
括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。
6、添括号法则
添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。
7、整式的运算:
整式的加减法:(1)去括号;(2)合并同类项。
第四章 基本平面图形
2、直线的性质
(1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
3、线段的性质
(1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的大小关系和它们的长度的大小关系是一致的。
4、线段的中点:
点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。
5、角:
有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。
6、角的表示
角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
7、角的度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”
8、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
9、角的性质
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较,角可以参与运算。
10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。
12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。
第五章 一元一次方程
1、方程
含有未知数的等式叫做方程。
2、方程的解
能使方程左右两边相等的未知数的值叫做方程的解。
3、等式的性质
(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。
(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。
4、一元一次方程
只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。
5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.
6、解一元一次方程的一般步骤:
(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1
第六章 数据的收集与整理
1、普查与抽样调查
为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。
2、扇形统计图
扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)
圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)
3、频数直方图
频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。
4、各种统计图的特点
条形统计图:能清楚地表示出每个项目的具体数目。
折线统计图:能清楚地反映事物的变化情况。
扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
看过七年级上册数学知识点总结的还看了:
浏览量:2
下载量:0
时间:
数学要考的知识点有哪些呢?接下来是读文网小编为大家带来的关于七年级数学下册知识点总结,希望会给大家带来帮助。
第二章平行线与相交线
一、平行线与相交线
平行线:在同一平面内,不相交的两条直线叫做平行线。
若两条直线只有一个公共点,我们称这两条直线为相交线。
二、余角与补角
1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。
3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。
4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。
5、余角和补角的性质用数学语言可表示为:
6、余角和补角的性质是证明两角相等的一个重要方法。
三、对顶角
1、两条直线相交成四个角,其中不相邻的两个角是对顶角。
2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
3、对顶角的性质:对顶角相等。
4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。
5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。
四、垂线及其性质
1、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
2、垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
五、同位角、内错角、同旁内角
1、两条直线被第三条直线所截,形成了8个角。
2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。
3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。
4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。
5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。
六、六类角
1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。
2、余角、补角只有数量上的关系,与其位置无关。
3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。
4、对顶角既有数量关系,又有位置关系。
七、平行线的判定方法
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行。
4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。
5、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行。
八、平行线的性质
1、两直线平行,同位角相等。
2、两直线平行,内错角相等。
3、两直线平行,同旁内角互补。
4、平行线的判定与性质具备互逆的特征,其关系如下:
在应用时要正确区分积极向上的题设和结论。
九、尺规作线段和角
1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。
2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。
3、尺规作图中直尺的功能是:
(1)在两点间连接一条线段;
(2)将线段向两方延长。
(2)将线段向两方延长。
4、尺规作图中圆规的功能是:
(1)以任意一点为圆心,任意长为半径作一个圆;
(2)以任意一点为圆心,任意长为半径画一段弧;
5、熟练掌握以下作图语言:
(1)作射线××;
(2)在射线上截取××=××;
(3)在射线××上依次截取××=××=××;
(4)以点×为圆心,××为半径画弧,交××于点×;
(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×;
(6)过点×和点×画直线××(或画射线××);
(7)在∠×××的外部(或内部)画∠×××=∠×××;
6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。
(1)画线段××=××;
(2)画∠×××=∠×××;
浏览量:3
下载量:0
时间:
完成了小学阶段的学习,进入紧张的初中阶段。下面是读文网小编为大家带来的关于初一数学基本知识点总结,希望会给大家带来帮助。
一元一次方程知识点
知识点1:等式的概念:用等号表示相等关系的式子叫做等式.
知识点2:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可.
说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数.
知识点3:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.
例2:如果(a+1) +45=0是一元一次方程,则a________,b________.
分析:一元一次方程需要满足的条件:未知数系数不等于0,次数为1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1.
知识点4:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则a±m=b±m.
(2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所得的结果仍是等式.
即若a=b,则am=bm.或. 此外等式还有其它性质: 若a=b,则b=a.若a=b,b=c,则a=c.
说明:等式的性质是解方程的重要依据.
例3:下列变形正确的是( )
A.如果ax=bx,那么a=b B.如果(a+1)x=a+1, 那么x=1
C.如果x=y,则x-5=5-y D.如果则
分析:利用等式的性质解题.应选D.
说明:等式两边不可能同时除以为零的数或式,这一点务必要引起同学们的高度重视.
知识点5:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程.
知识点6:关于移项:⑴移项实质是等式的基本性质1的运用.
⑵移项时,一定记住要改变所移项的符号.
知识点7:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1.具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.
例4:解方程 .
分析:灵活运用一元一次方程的步骤解答本题.
解答:去分母,得9x-6=2x,移项,得9x-2x=6,合并同类项,得7x=6,系数化为1,得x=.
说明:去分母时,易漏乘方程左、右两边代数式中的某些项,如本题易错解为:去分母得9x-1=2x,漏乘了常数项.
知识点8:方程的检验
检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等.
注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边.
三、一元一次方程的应用
一元一次方程在实际生活中的应用,是很多同学在学习一元一次方程过程中遇到的一个棘手问题.下面是对一元一次方程在实际生活中的应用的一个专题介绍,希望能为同学们的学习提供帮助.
一、行程问题
行程问题的基本关系:路程=速度×时间,
速度=,时间=.
1.相遇问题:速度和×相遇时间=路程和
例1甲、乙二人分别从A、B两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问甲、乙二人经过多长时间能相遇?
解:设甲、乙二人t分钟后能相遇,则
(200+300)× t =1000,
t=2.
答:甲、乙二人2钟后能相遇.
2.追赶问题:速度差×追赶时间=追赶距离
例2甲、乙二人分别从A、B两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问几分钟后乙能追上甲? 解:设t分钟后,乙能追上甲,则
(300-200)t=1000,
t=10.
答:10分钟后乙能追上甲.
3. 航行问题:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度. 例3甲乘小船从A地顺流到B地用了3小时,已知A、B两地相距90千米.水流速度是20千米/小时,求小船在静水中的速度.
解:设小船在静水中的速度为v,则有
(v+20)×3=90,
v=10(千米/小时).
答:小船在静水中的速度是10千米/小时.
二、工程问题
工程问题的基本关系:①工作量=工作效率×工作时间,工作效率=,工作时间=;②常把工作量看作单位1.
例4已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合作5天后,甲另有事,乙再单独做几天才能完成?
解:设甲再单独做x天才能完成,有
(+)×5+=1,
x=11.
答:乙再单独做11天才能完成.
三、环行问题
环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.
例5王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?
解:设经过t分钟二人相遇,则
(300-200)t=400,
t=4.
答:经过4分钟二人相遇.
四、数字问题
数字问题的基本关系:数字和数是不同的,同一个数字在不同数位上,表示的数值不同.
例6一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数.
解:设原两位数的个位数字是x,则十位数字为x+1,根据题意,得
[10(x-1)+x]+[10x+(x+1)]=33,
x=1,则x+1=2.
∴这个数是21.
答:这个两位数是21.
五、利润问题
利润问题的基本关系:①获利=售价-进价②打几折就是原价的十分之几 例7某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?
解:设该电器每台的进价为x元,则定价为(48+x)元,根据题意,得 6[0.9(48+x)-x]=9[(48+x)-30-x] ,
x=162.
48+x=48+162=210.
答:该电器每台进价、定价各分别是162元、210元.
六、浓度问题
浓度问题的基本关系:溶液浓度=,溶液质量=溶质质量+溶剂质量,溶质质量=溶液质量×溶液浓度
例8用“84”消毒液配制药液对白色衣物进行消毒,要求按1∶200的比例进行稀释.现要配制此种药液4020克,则需要“84”消毒液多少克?
解:设需要“84”消毒液x克,根据题意得
=,
x=20.
答:需要“84”消毒液20克.
七、等积变形问题
例1用直径为90mm的圆柱形玻璃杯(已装满水,且水足够多)向一个内底面积为131×131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降了多少?(结果保留π)
第9 / 11页
分析:玻璃杯里倒掉的水的体积和长方体铁盒里所装的水的体积相等,所以等量关系为:
玻璃杯里倒掉的水的体积=长方体铁盒的容积.
解:设玻璃杯中水的高度下降了xmm,根据题意,得
经检验,它符合题意.
八、利息问题
例2储户到银行存款,一段时间后,银行要向储户支付存款利息,同时银行还将代扣由储户向国家缴纳的利息税,税率为利息的20%.
(1)将8500元钱以一年期的定期储蓄存入银行,年利率为2.2%,到期支取时可得到利息________元.扣除利息税后实得________元.
(2)小明的父亲将一笔资金按一年期的定期储蓄存入银行,年利率为2.2%,到期支取时,扣除所得税后得本金和利息共计71232元,问这笔资金是多少元?
(3)王红的爸爸把一笔钱按三年期的定期储蓄存入银行,假设年利率为3%,到期支取时扣除所得税后实得利息为432元,问王红的爸爸存入银行的本金是多少?
分析:利息=本金×利率×期数,存几年,期数就是几,另外,还要注意,实得利息=利息-利息税.
解:(1)利息=本金×利率×期数=8500×2.2%×1=187元.
实得利息 =利息×(1-20%)=187×0.8=149.6元.
(2)设这笔资金为x元,依题意,有x(1+2.2%×0.8)=71232.
解方程,得x=70000.
经检验,符合题意.
答:这笔资金为70000元.
(3)设这笔资金为x元,依题意,得x×3×3%×(1-20%)=432.
解方程,得x=6000.
经检验,符合题意.
答:这笔资金为6000元.
看过初一数学基本知识点总结的还看了:
浏览量:3
下载量:0
时间:
初一的学习生活即将过去,正是检验数学学习成果的时候了。接下来是读文网小编为大家带来的关于初一数学下册知识点的总结,供大家参考。
猜你感兴趣:
浏览量:3
下载量:0
时间:
在即将到来的期末考试,同学们要如何准备知识点内容复习呢?下面是读文网小编为大家带来的关于北师初一数学知识点总结,希望会给大家带来帮助。
1.圆柱:底面是圆面,侧面是曲面 柱体棱体:底面是多边形,侧面是正方形或长方形
2. 锥体
圆锥:底面是圆面,侧面是曲面
棱锥:底面是多边形,侧面都是三角形3. 球体:由球面围成的 (球面是曲面) 4. 几何图形是由点、线、面构成的 。
①几何体与外界的 接触面或我们能看到的 外表就是几何体的 表面。几何的 表面有平面和曲面; ②面与面相交得到线; ③线与线相交得到点。
5. 棱:在棱柱中,任何相邻两个面的 交线都叫做棱.
6. 侧棱:相邻两个侧面的 交线叫做侧棱..所有侧棱长都相等。 7. 棱柱的 上、下底面的 形状相同,侧面的 形状都是长方形。
8. 根据底面图形的 边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的 形状分别为三边形、四边形、五边形、六边形……
9. 长方体和正方体都是四棱柱。
10. 圆柱的 表面展开图是由两个相同的 圆形和一个长方形连成。
11. 圆锥的 表面展开图是由一个圆形和一个扇形连成。
12. 设一个多边形的 边数为n(n≥3,且n为整数),从一个顶点出发的 对角线有(n-3)条;可以把n边形成
弧是一条曲线。 14. 扇形,由一条弧和经过这条弧的 端点的 两条半径所组成的 图形。 15. 凸多边形和凹多边形都属于多边形。有弧或不封闭图形都不是多边形。
正整数(如:1,2,3) 整数
零(0)
负整数(如:1,2,3)有理数
正分数(如:1,1,5.3,3.8 分数
23)负分数(如:12,13,2.3,4.8)★数轴的 三要素:原点、正方向、单位长度(三者缺一不可)
★任何一个有理数,都可以用数轴上的 一个点来表示。(反过来,不能说数轴上所有的 点都表示有理数)★如果两个数只有符号不同,那么我们称其中一个数为另一个数的 相反数,也称这两个数互为相反数。(0的 相反数是0)
★在数轴上,表示互为相反数的 两个点,位于原点的 侧,且到原点的 距离相等。
★数轴上两点表示的 数,右边的 总比左边的 大。正数在原点的 右边,负数在原点的 左边。
★绝对值的 定义:一个数a的 绝对值就是数轴上表示数a的 点与原点的 距离。数a的 绝对值记作|a|。 ★正数的 绝对值是它本身;负数的 绝对值是它的 数;0的 绝对值是0。
★绝对值的 性质:除0外,绝对值为一正数的 数有两个,它们互为相反数;
互为相反数的 两数(除0外)的 绝对值相等; 任何数的 绝对值总是非负数,即|a|≥0
★比较两个负数的 大小,绝对值大的 反而小。比较两个负数的 大小的 步骤如下: ①先求出两个数负数的 绝对值; ②比较两个绝对值的 大小; ③根据“两个负数,绝对值大的 反而小”做出正确的 判断。 ★绝对值的 性质: ①对任何有理数a,都有|a|≥0 ②若|a|=0,则|a|=0,反之亦然 ③若|a|=b,则a=±b ④对任何有理数a,都有|a|=|-a| ★有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的 数的 符号,并用较大数的 绝对值减去较小数的 绝对值。
③一个数同0相加,仍得这个数。
★加法的 交换律、结合律在有理数运算中同样适用。 ★灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的 两个数,可以先相加; ②符号相同的 数,可以先相加; ③分母相同的 数,可以先相加; ④几个数相加能得到整数,可以先相加。
★有理数减法法则: 减去一个数,等于加上这个数的 相反数。 ★有理数减法运算时注意两“变”:①改变运算符号; ②改变减数的 性质符号(变为相反数)
有理数减法运算时注意一个“不变”:被减数与减数的 位置不能变换,也就是说,减法没有交换律。 ★有理数的 加减法混合运算的 步骤:
①写成省略加号的 代数和。在一个算式中,若有减法,应由有理数的 减法法则转化为加法,然后再省略加号和括号; ②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的 相反数,当有减法统一成加法时,减数应变成它本身的 相反数。) ★有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。 ②任何数与0相乘,积仍为0。
★如果两个数互为倒数,则它们的 乘积为1。
…等) ★乘法的 交换律、结合律、分配律在有理数运算中同样适用。
★有理数乘法运算步骤:①先确定积的 符号;
②求出各因数的 绝对值的 积。
★乘积为1的 两个有理数互为倒数。注意: ①零没有倒数 ②求分数的 倒数,就是把分数的 分子分母颠倒位置。一个带分数要先化成假分数。 ③正数的 倒数是正数,负数的 倒数是负数。 ★有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。 ②0除以任何非0的 数都得0。0不可作为除数,否则无意义。
★有理数的 乘方
★注意:①一个数可以看作是本身的 一次方,如5=51; ②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。 ★乘方的 运算性质: ①正数的 任何次幂都是正数; ②负数的 奇次幂是负数,负数的 偶次幂是正数; ③任何数的 偶数次幂都是非负数; ④1的 任何次幂都得1,0的 任何次幂都得0; ⑤-1的 偶次幂得1;-1的 奇次幂得-1; ⑥在运算过程中,首先要确定幂的 符号,然后再计算幂的 绝对值。 ★有理数混合运算法则:①先算乘方,再算乘除,最后算加减。 ②如果有括号,先算括号里面的 。
★科学记数法:一般地,一个大于10的 数可以表示成a×10n的 形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.....
★代数式的 概念:
用运算符号(加、减、乘除、乘方、开方等)把数与表示数的 字母连接而成的 式子叫做代数式...。单独的 一个数或一个字母也是代数式。 注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式; ③代数式中的 字母所表示的 数必须要使这个代数式有意义,是实际问题的 要符合实际问题的 意义。
★代数式的 书写格式: ①代数式中出现乘号,通常省略不写,如vt; ②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,a; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般按照分数的 写法来写,如4÷(a-4)应写作4
线具有“÷”号和括号的 双重作用。 ⑥在表示和(或)差的 代差的 代数式后有单位名称的 ,则必须把代数式括起来,再将单位名称写
在式子的 后面,如(a2b2)平方米
★代数式的 系数:
代数式中的 数字中的 数字因数叫做代数式...的. 系数..。如3x,4y的 系数分别为3,4。 注意:①单个字母的 系数是1,如a的 系数是1; ②只含字母因数的 代数式的 系数是1或-1,如-ab的 系数是-1。a3b的 系数是1 ★代数式的 项:
代数式6x22x7表示6x2、-2x、-7的 和,6x2、-2x、-7是它的 项,其中把不含字母的 项叫做常数项
注意:在交待某一项时,应与前面的 符号一起交待。 ★同类项:
所含字母相同,并且相同字母的 指数也相同的 项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的 指数也相同。这两个条件缺一不可;
②同类项与系数无关,与字母的 排列顺序无关; ③几个常数项也是同类项。 ★合差同类项:
把代数式中的 同类项合并成一项,叫做合并同类项。 ①合并同类项的 理论根据是逆用乘法分配律; ②合并同类项的 法则是把同类项的 系数相加,所得结果作为系数,字母和字母的 指数不变。 注意: ①如果两个同类项的 系数互为相反数,合并同类项后结果为0; ②不是同类项的 不能合并,不能合并的 项,在每步运算中都要写上; ③只要不再有同类项,就是最后结果,结果还是代数式。 ★根据去括号法则去括号:
括号前面是“+”号,把括号和它前面的 “+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。 ★根据分配律去括号:
括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的 分配律用+1或-1去乘括号里的 每一项以达到去括号的 目的 。 ★注意: ①去括号时,要连同括号前面的 符号一起去掉; ②去括号时,首先要弄清楚括号前是“+”号还是“-”号; ③改变符号时,各项都变号;不改变符号时,各项都不变号。
一. 线段、射线、直线
折线统计图:能够清晰地反映同一事物在不同时期的 变化情况。
条形统计图:能够清晰地反映每个项目的 具体数目及之间的 大小关系。
扇形统计图:能够清晰地表示各部分在总体中所占的 百分比及各部分之间的 大小关系 统计图对统计的 作用:
(1)可以清晰有效地表达数据。 (2)可以对数据进行分析。 (3)可以获得许多的 信息。
(4)可以帮助人们作出合理的 决策。
★2. 二.1. 2. 3. 三.1. 角2. ②③④方程..
一. 整式 ★1. 单项式
①由数与字母的 积组成的 代数式叫做单项式。单独一个数或字母也是单项式。
②单项式的 系数是这个单项式的 数字因数,作为单项式的 系数,必须连同数字前面的 性质符号,如果一个单项式只是字母的 积,并非没有系数.
③一个单项式中,所有字母的 指数和叫做这个单项式的 次数. ★2.多项式
①几个单项式的 和叫做多项式.在多项式中,每个单项式叫做多项式的 项.其中,不含字母的 项叫做常数项.一个多项式中,次数最高项的 次数,叫做这个多项式的 次数.
②单项式和多项式都有次数,含有字母的 单项式有系数,多项式没有系数.多项式的 每一项都是单项式,一个多项式的 项数就是这个多项式作为加数的 单项式的 个数.多项式中每一项都有它们各自的 次数,但是它们的 次数不可能都作是为这个多项式的 次数,一个多项式的 次数只有一个,它是所含各项的 次数中最高的 那一项次数.
★3.整式单项式和多项式统称为整式.
代数式整式单项式多项式
其他代数式
二. 整式的 加减
¤1. 整式的 加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.
三. 同底数幂的 乘法
★同底数幂的 乘法法则: am
(m,n都是正数)是幂的 运算中最基本的 法则,在应用法则运算时,
要注意以下几点:
①法则使用的 前提条件是:幂的 底数相同而且是相乘时,底数a可以是一个具体的 数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的 乘法与整式的 加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为am
(其中m、n、p均为正数);
⑤公式还可以逆用:a
四.幂的 乘方与积的 乘方 ★1. 幂的 乘方法则:(am)n
★2. (am)n(an)mamn(m,n都为正数).
★3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,
★5.要注意区别(ab)n与(a+b)n意义是不同的 ,不要误以为(a+b)n=an+bn(a、b均不为零)。
★6.积的 乘方法则:积的 乘方,等于把积每一个因式分别乘方,再把所得的 幂相乘,即(ab)nanbn(n为正整数)。
★7.幂的 乘方与积乘方法则均可逆向运用。 五. 同底数幂的 除法
★1. 同底数幂的 除法法则:同底数幂相除,底数不变,指数相减,即am
★2. 在应用时需要注意以下几点:
①法则使用的 前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的 数的 0次幂等于1,即a01(a0),如100
1,(-2.50=1),则00无意义. ③任何不等于0的 数的 -p次幂(p是正整数),等于这个数的 p的 次幂的 倒数,即a
p( a≠0,p是正整数), 而0-1,0-3都是无意义的 ;当a>0时,a-p的 值一定是正的 ; 当a<0时,a-p的 值可能是正也可能是负的 ,如(-2)
④运算要注意运算顺序. 六. 整式的 乘法
★1. 单项式乘法法则:单项式相乘,把它们的 系数、相同字母分别相乘,对于只在一个单项式里含有的 字母,连同它的 指数作为积的 一个因式。 单项式乘法法则在运用时要注意以下几点:
①积的 系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的 错误的 是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的 乘法法则;
③只在一个单项式里含有的 字母,要连同它的 指数作为积的 一个因式; ④单项式乘法法则对于三个以上的 单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。 ★2.单项式与多项式相乘
单项式乘以多项式,是通过乘法对加法的 分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的 每一项,再把所得的 积相加。 单项式与多项式相乘时要注意以下几点:
①单项式与多项式相乘,积是一个多项式,其项数与多项式的 项数相同; ②运算时要注意积的 符号,多项式的 每一项都包括它前面的 符号;
③在混合运算时,要注意运算顺序。 ★3.多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的 每一项乘以另一个多项式的 每一项,再把所得的 积相加。 多项式与多项式相乘时要注意以下几点:
①多项式与多项式相乘要防止漏项,检查的 方法是:在没有合并同类项之前,积的 项数应等于原两个多项式项数的 积;
②多项式相乘的 结果应注意合并同类项;
③对含有同一个字母的 一次项系数是1的 两个一次二项式相乘
看过北师初一数学知识点总结的还看了:
浏览量:2
下载量:0
时间:
中考地理知识点归纳总结下载人教版
中考需要背诵的地理知识繁多,学会分类很重要。那么关于中考地理知识点有哪些呢?以下是小编准备的一些中考地理知识点归纳总结免费,仅供参考。
(一)读懂题意
试题是通过一定的文字表述或图表、数据等资料等形式出现的,考生应具备从文字和图表、数据资料中提取有效信息的能力,并能够对提取的信息进行加工、处理和运用,解决试题中所提出的问题。要达到这个要求,考生首先必须能够读懂题意,找出关键词,把握试题的中心含义,以及试题作答要求,这样才能做到有的放矢。
(二)看清图示
地理试题中很大一部分是与图相关的。因此,学生应该对各类地理图像、图表的特点和作用认真掌握。在答题时认真看清图像、图表中所表现的内容,准确、全面而有效地从图示材料中提取显性的和隐性的信息。并要注意将图像、图表资料与文字资料有机的结合起来,加以灵活运用。
(三)注意联系
各种地理要素之间是相互联系、相互影响的,因此,在答题时应该注意地理事物和现象之间的相互联系,同时还要关注跨学科之间的联系,以及与生活实际的联系等。
(四)表达清晰
准确的地理学科语言将答案表述清楚,这也是考试中的重要环节。在复习迎考中,应该把语言表述能力的训练放在重要的位置。
浏览量:4
下载量:0
时间:
2023高考地理必考知识点归纳总结免费版
学好地理就足以在别人面前充分展示自己的学识。高中地理有很多难背的知识点,那么应该怎么学习呢?以下是小编准备的一些高考地理必考知识点归纳总结免费版,仅供参考。
答题用地理专业术语且条理清楚、重点突出、简洁明了、字迹工整。
要回答好高考地理简答题,除了遵循以上答题规范外,根据目前高考试卷的评分标准,还应遵循以下技巧:
一是防止漏答,答题尽量少而精,但如果没有把握,可以适当多答。
二是要掌握详细和模糊的技巧。
三是要条理清楚。千万不要自始至终只有一个段落,必须分条分段,一个知识点一条
浏览量:3
下载量:0
时间:
高考化学知识点归纳总结人教版免费
高中的学习中,每一科都会形成自己的知识点卡,化学当然不例外。那么高考化学知识点有哪些呢?以下是小编准备的一些高考化学知识点归纳总结免费,仅供参考。
基本策略:
先易后难;较易题必须阅读两遍拿满分;较难题阅读2-3遍后还没有任何思路就放弃。
审题是“审”而不是“看”,边审题边做标记。
第二卷一般是有机题和选做题较容易,可先做;实验及无机题较难要后做。
选择题做完后一般不要轻易更改答案。
填空不要留空,不会做也要碰运气填满。
若出现思路混乱无头绪时就停下笔,深呼吸并掐自己一两下。
审题常见错误有:
一是不看全题,断章取义。部分同学喜欢看一段做一段,做到后半题时才发现前半题做错了,只得从头再来。须知,一道化学题包含完整的内容,是一个整体。有的句与句之间有着内在的联系;有的前后呼应,相互衬垫。所以必须总观全题,全面领会题意。二是粗心大意,一掠而过。如许多考生把不可能看成可能;把由大到小看成由小到大;把化合物看成物质或单质;把不正确看成正确;把强弱顺序看成弱强顺序而答错。三是误解题意,答非所问。四是审题不透,一知半解。许多同学见到新情境题目,内心紧张,未能全面理解题意。
按要求答题:
如把答案写在密封线内,阅卷时无法看到答案而不给分;要求写元素名称而错写成元素符号,而要求写元素符号又答成元素名称或分子式;要求写物质名称而错写成分子式;要求写有机物的结构简式而错写成分子式或名称;要求写离子方程式而错写成化学方程式;把相对分子质量、摩尔质量的单位写成“克”;把物质的量、摩尔浓度、气体体积、质量、密度、压强等的单位漏掉;化学方程式、离子方程式不配平;热化学方程式不注明物质的状态等。
善于联想运用
解无机试题或有机试题,都要注意联想、运用课本知识。尤其是近几年的有机化学试题,均从考生从未接触过的新物质、新材料出发命信息给予题,考查有机化学知识,更应会根据有机化学的知识网络、转化规律、官能团的性质等进行联想、迁移、类推,做到举一反三,触类旁通。
浏览量:2
下载量:0
时间:
2023陕西五校联考高三上学期期中文科数学试题及答案解析
陕西高三五校联考是"府、米、绥、横、靖"五校联考于2023-10-28开考。以下是2023陕西五校联考高三上学期期中文科数学试题及答案的相关内容,供大家学习!
一到两天左右,最快的话就会在这个时间段就会出成绩,因为高三的期中考试相对比较重要一点,然后老师改卷的速度也会比较快,一般在考完一科的时候,当天晚上就可能已经知道该科的成绩了,然后全科成绩公布的话,就可能需要考后一到两天的这个时间。
所以说高三期中考试一般就在这个时间点就会发出全部的生机,因为高三这个时间段比较紧张,然后各个成绩的话,基本都会发布出来给大家去参考,然后让大家评估一下自己的实力,并且综合实力去进行备考高考。高三期终考试几天出成绩就是这样子的一个答案,并且在各个学校是不同的。
浏览量:3
下载量:0
时间: