为您找到与数学初三中考必记知识点相关的共200个结果:
随着考试的来临,我们要做好万全准备。下面是读文网小编为大家收集整理的初三数学中考知识点,相信这些文字对你会有所帮助的。
(1)必然事件是指一定能发生的事件,或者说发生的可能性是100%;
(2)不可能事件是指一定不能发生的事件;
(3)随机事件是指在一定条件下,可能发生也可能不发生的事件;
(4)随机事件的可能性
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
(5)概率
一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P.
(6)可能性与概率的关系
事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0.
浏览量:4
下载量:0
时间:
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.接下来是读文网小编为大家带来的2016中考数学基本知识点归纳,供大家参考。
考点一、圆的相关概念 (3分)
1、圆的定义
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示
以点O为圆心的圆记作“⊙O”,读作“圆O”
考点二、弦、弧等与圆有关的定义 (3分)
(1)弦
连接圆上任意两点的线段叫做弦。(如图中的AB)
(2)直径
经过圆心的弦叫做直径。(如途中的CD)
直径等于半径的2倍。
(3)半圆
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
考点三、垂径定理及其推论 (3分)
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:
过圆心
垂直于弦
直径 平分弦 知二推三
平分弦所对的优弧
平分弦所对的劣弧
考点四、圆的对称性 (3分)
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
考点五、弧、弦、弦心距、圆心角之间的关系定理 (3分)
1、圆心角
顶点在圆心的角叫做圆心角。
2、弦心距
从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
考点六、圆周角定理及其推论 (3~8分)
1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
考点七、点和圆的位置关系 (3分)
设⊙O的半径是r,点P到圆心O的距离为d,则有:
d<r点P在⊙O内;
d=r点P在⊙O上;
d>r点P在⊙O外。
考点八、过三点的圆 (3分)
1、过三点的圆
不在同一直线上的三个点确定一个圆。
2、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心
三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)
圆内接四边形对角互补。
考点九、反证法 (3分)
先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。
考点十、直线与圆的位置关系 (3~5分)
直线和圆有三种位置关系,具体如下:
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
直线l与⊙O相交d<r;
直线l与⊙O相切d=r;
直线l与⊙O相离d>r;
考点十一、切线的判定和性质 (3~8分)
1、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线。
2、切线的性质定理
圆的切线垂直于经过切点的半径。
考点十二、切线长定理 (3分)
1、切线长
在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
考点十三、三角形的内切圆 (3~8分)
1、三角形的内切圆
与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心
三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
考点十四、圆和圆的位置关系 (3分)
1、圆和圆的位置关系
如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距
两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定
设两圆的半径分别为R和r,圆心距为d,那么
两圆外离d>R+r
两圆外切d=R+r
两圆相交R-r<d<R+r(R≥r)
两圆内切d=R-r(R>r)
两圆内含d<R-r(R>r)
4、两圆相切、相交的重要性质
如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
考点十五、正多边形和圆 (3分)
1、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系
只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
考点十六、与正多边形有关的概念 (3分)
1、正多边形的中心
正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径
正多边形的外接圆的半径叫做这个正多边形的半径。
3、正多边形的边心距
正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角
正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
考点十七、正多边形的对称性 (3分)
1、正多边形的轴对称性
正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
2、正多边形的中心对称性
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3、正多边形的画法
先用量角器或尺规等分圆,再做正多边形。
考点十八、弧长和扇形面积 (3~8分)
1、弧长公式
n°的圆心角所对的弧长l的计算公式为
2、扇形面积公式
其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。
3、圆锥的侧面积
其中l是圆锥的母线长,r是圆锥的地面半径。
补充:(此处为大纲要求外的知识,但对开发学生智力,改善学生数学思维模式有很大帮助)
1、相交弦定理
⊙O中,弦AB与弦CD相交与点E,则AEBE=CEDE
2、弦切角定理
弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。
弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。
即:∠BAC=∠ADC
3、切割线定理
PA为⊙O切线,PBC为⊙O割线,
则
随机数。
看过2016中考数学基本知识点归纳的还看了:
浏览量:3
下载量:0
时间:
随着时间的流逝,中考即将到来,同学们要有何准备呢?接下来是读文网小编为大家带来的2016中考总复习第二十三章数学知识点归纳,供大家参考。
考点一、平均数 (3分)
1、平均数的概念
(1)平均数:一般地,如果有n个数那么,叫做这n个数的平均数,读作“x拔”。
(2)加权平均数:如果n个数中,出现次,出现次,…,出现次(这里),那么,根据平均数的定义,这n个数的平均数可以表示为,这样求得的平均数叫做加权平均数,其中叫做权。
2、平均数的计算方法
(1)定义法
当所给数据比较分散时,一般选用定义公式:
(2)加权平均数法:
当所给数据重复出现时,一般选用加权平均数公式:,其中。
(3)新数据法:
当所给数据都在某一常数a的上下波动时,一般选用简化公式:。
其中,常数a通常取接近这组数据平均数的较“整”的数,,,…,。是新数据的平均数(通常把叫做原数据,叫做新数据)。
考点二、统计学中的几个基本概念 (4分)
1、总体
所有考察对象的全体叫做总体。
2、个体
总体中每一个考察对象叫做个体。
3、样本
从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量
样本中个体的数目叫做样本容量。
5、样本平均数
样本中所有个体的平均数叫做样本平均数。
6、总体平均数
总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
考点三、众数、中位数 (3~5分)
1、众数
在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
考点四、方差 (3分)
1、方差的概念
在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。通常用“”表示,即
2、方差的计算
(1)基本公式:
(2)简化计算公式(Ⅰ):
也可写成
此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。
(3)简化计算公式(Ⅱ):
当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组新数据,,…,,那么,
此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。
(4)新数据法:
原数据的方差与新数据,,…,的方差相等,也就是说,根据方差的基本公式,求得的方差就等于原数据的方差。
3、标准差
方差的算数平方根叫做这组数据的标准差,用“s”表示,即
考点五、频率分布 (6分)
1、频率分布的意义
在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。
2、研究频率分布的一般步骤及有关概念
(1)研究样本的频率分布的一般步骤是:
①计算极差(最大值与最小值的差)
②决定组距与组数
③决定分点
④列频率分布表
⑤画频率分布直方图
(2)频率分布的有关概念
①极差:最大值与最小值的差
②频数:落在各个小组内的数据的个数
③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。
考点六、确定事件和随机事件 (3分)
1、确定事件
必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
2、随机事件:
在一定条件下,可能发生也可能不放声的事件,称为随机事件。
考点七、随机事件发生的可能性 (3分)
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
考点八、概率的意义与表示方法 (5~6分)
1、概率的意义
一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2、事件和概率的表示方法
一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P
考点九、确定事件和随机事件的概率之间的关系 (3分)
1、确定事件概率
(1)当A是必然发生的事件时,P(A)=1
(2)当A是不可能发生的事件时,P(A)=0
2、确定事件和随机事件的概率之间的关系
事件发生的可能性越来越小
0 1概率的值
事件发生的可能性越来越大不可能发生 必然发生
考点十、古典概型 (3分)
1、古典概型的定义
某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。我们把具有这两个特点的试验称为古典概型。
2、古典概型的概率的求法
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
考点十一、列表法求概率 (10分)
1、列表法
用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
2、列表法的应用场合
当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
考点十二、树状图法求概率 (10分)
1、树状图法
就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
2、运用树状图法求概率的条件
当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
考点十三、利用频率估计概率(8分)
1、利用频率估计概率
在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
3、随机数
在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的数据称为随机数
看过2016中考总复习第二十三章数学知识点归纳的还看了:
浏览量:3
下载量:0
时间:
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.接下来是读文网小编为大家带来的2016中考总复习第十九章数学知识点归纳 ,供大家参考。
考点一、平面直角坐标系 (3分)
1、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
考点二、不同位置的点的坐标的特征 (3分)
1、各象限内点的坐标的特征
点P(x,y)在第一象限
点P(x,y)在第二象限
点P(x,y)在第三象限
点P(x,y)在第四象限
2、坐标轴上的点的特征
点P(x,y)在x轴上,x为任意实数
点P(x,y)在y轴上,y为任意实数
点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)
3、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线上x与y相等
点P(x,y)在第二、四象限夹角平分线上x与y互为相反数
4、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征
点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数
点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数
点P与点p’关于原点对称横、纵坐标均互为相反数
6、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
(1)点P(x,y)到x轴的距离等于
(2)点P(x,y)到y轴的距离等于
(3)点P(x,y)到原点的距离等于
考点三、函数及其相关概念 (3~8分)
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
考点四、正比例函数和一次函数 (3~10分)
1、正比例函数和一次函数的概念
一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。
特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。
2、一次函数的图像
所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。
一般地,正比例函数有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。
看过2016中考总复习第十九章数学知识点归纳的还看了:
浏览量:2
下载量:0
时间:
寒窗苦读,为的就是在考试中展现出自己最好的水平,大家更应该加把劲,努力学习,认真总结知识点,接下来是读文网小编为大家带来的2016中考总复习第二十五章数学知识点归纳 ,供大家参考。
考点一、比例线段 (3分)
1、比例线段的相关概念
如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是,或写成a:b=m:n
在两条线段的比a:b中,a叫做比的前项,b叫做比的后项。
在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段
若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段的d叫做a,b,c的第四比例项。
如果作为比例内项的是两条相同的线段,即或a:b=b:c,那么线段b叫做线段a,c的比例中项。
2、比例的性质
(1)基本性质
①a:b=c:dad=bc
②a:b=b:c
(2)更比性质(交换比例的内项或外项)
(交换内项)
(交换外项)
(同时交换内项和外项)
(3)反比性质(交换比的前项、后项):
(4)合比性质:
(5)等比性质:
3、黄金分割
把线段AB分成两条线段AC,BC(AC>BC),并且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC=AB0.618AB
考点二、平行线分线段成比例定理 (3~5分)
三条平行线截两条直线,所得的对应线段成比例。
推论:
(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
(2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。
考点三、相似三角形 (3~8分)
1、相似三角形的概念
对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“∽”来表示,读作“相似于”。相似三角形对应边的比叫做相似比(或相似系数)。
2、相似三角形的基本定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
用数学语言表述如下:
∵DE∥BC,∴△ADE∽△ABC
相似三角形的等价关系:
(1)反身性:对于任一△ABC,都有△ABC∽△ABC;
(2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC
(3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’。
3、三角形相似的判定
(1)三角形相似的判定方法
①定义法:对应角相等,对应边成比例的两个三角形相似
②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似
(2)直角三角形相似的判定方法
①以上各种判定方法均适用
②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
4、相似三角形的性质
(1)相似三角形的对应角相等,对应边成比例
(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比
(3)相似三角形周长的比等于相似比
(4)相似三角形面积的比等于相似比的平方。
5、相似多边形
(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比(或相似系数)
(2)相似多边形的性质
①相似多边形的对应角相等,对应边成比例
②相似多边形周长的比、对应对角线的比都等于相似比
③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比
④相似多边形面积的比等于相似比的平方
6、位似图形
如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。
性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。
由一个图形得到它的位似图形的变换叫做位似变换。利用位似变换可以把一个图形放大或缩小。
看过2016中考总复习第二十五章数学知识点归纳的还看了:
浏览量:3
下载量:0
时间:
九年级是一个至关重要的学年,大家一定认真复习,接下来是读文网小编为大家带来的2016中考总复习第十八章数学知识点归纳 ,供大家参考。
考点一、四边形的相关概念 (3分)
1、四边形
在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。
2、凸四边形
把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。
3、对角线
在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。
4、四边形的不稳定性
三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性。但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。
5、四边形的内角和定理及外角和定理
四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n边形的内角和等于 180°;
多边形的外角和定理:任意多边形的外角和等于360°。
6、多边形的对角线条数的计算公式
设多边形的边数为n,则多边形的对角线条数为 。
考点二、平行四边形 (3~10分)
1、平行四边形的概念
两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”。
2、平行四边形的性质
(1)平行四边形的邻角互补,对角相等。
(2)平行四边形的对边平行且相等。
推论:夹在两条平行线间的平行线段相等。
(3)平行四边形的对角线互相平分。
(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。
3、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形
(2)定理1:两组对角分别相等的四边形是平行四边形
(3)定理2:两组对边分别相等的四边形是平行四边形
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形
4、两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积
S平行四边形=底边长×高=ah
考点三、矩形 (3~10分)
1、矩形的概念
有一个角是直角的平行四边形叫做矩形。
2、矩形的性质
(1)具有平行四边形的一切性质
(2)矩形的四个角都是直角
(3)矩形的对角线相等
(4)矩形是轴对称图形
3、矩形的判定
(1)定义:有一个角是直角的平行四边形是矩形
(2)定理1:有三个角是直角的四边形是矩形
(3)定理2:对角线相等的平行四边形是矩形
4、矩形的面积
S矩形=长×宽=ab
考点四、菱形 (3~10分)
1、菱形的概念
有一组邻边相等的平行四边形叫做菱形
2、菱形的性质
(1)具有平行四边形的一切性质
(2)菱形的四条边相等
(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(4)菱形是轴对称图形
3、菱形的判定
(1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
4、菱形的面积
S菱形=底边长×高=两条对角线乘积的一半
考点五、正方形 (3~10分)
1、正方形的概念
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质
(1)具有平行四边形、矩形、菱形的一切性质
(2)正方形的四个角都是直角,四条边都相等
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角
(4)正方形是轴对称图形,有4条对称轴
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定
(1)判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:
先证明它是平行四边形;
再证明它是菱形(或矩形);
最后证明它是矩形(或菱形)
4、正方形的面积
设正方形边长为a,对角线长为b
S正方形=
考点六、梯形 (3~10分)
1、梯形的相关概念
一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。
梯形中不平行的两边叫做梯形的腰。
梯形的两底的距离叫做梯形的高。
两腰相等的梯形叫做等腰梯形。
一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分类如下:
一般梯形
梯形 直角梯形
特殊梯形
等腰梯形
2、梯形的判定
(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。
(2)一组对边平行且不相等的四边形是梯形。
3、等腰梯形的性质
(1)等腰梯形的两腰相等,两底平行。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
4、等腰梯形的判定
(1)定义:两腰相等的梯形是等腰梯形
(2)定理:在同一底上的两个角相等的梯形是等腰梯形
(3)对角线相等的梯形是等腰梯形。
5、梯形的面积
(1)如图,
(2)梯形中有关图形的面积:
① ;
② ;
③
6、梯形中位线定理
梯形中位线平行于两底,并且等于两底和的一半。
看过2016中考总复习第十八章数学知识点归纳的还看了:
浏览量:3
下载量:0
时间:
初三期中考试即将到来,同学们要如何准备呢?接下来是读文网小编为大家带来的初三期中考试数学知识点整理,供大家参考。
正3边形:
内角 = 180度/3=60度
中心角 = 360度/3=120度
半径 = R
边长 = (3的平方根)*R
边心距 = R/2
周长 = 3*(3的平方根)*R
面积 = (3的平方根)*R * (3R/2) /2 =3*(3的平方根)/4 *(R的平方)
正4边形:
内角 = 180度/3=60度
中心角 = 360度/3=120度
半径 = R
边长 = (2的平方根)*R
边心距 = R/(2的平方根)
周长 = 4*(2的平方根)*R
面积 = 2*(R的平方)
正6边形:
内角 = (6-2)*180度/6=120度
中心角 = 360度/6=60度
半径 = R
边长 = R
边心距 = (3的平方根)/2*R
周长 = 6*R
面积 = 边心距*R*3 = 3*(3的平方根)/2*(R的平方)
看过初三期中考试数学知识点整理的还看了:
浏览量:2
下载量:0
时间:
接下来是读文网小编为大家带来的初三年级上册数学知识点归纳总结,供大家参考。
第五章 方程(组)
★重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)
☆ 内容提要☆
一、 基本概念
1.方程、方程的解(根)、方程组的解、解方程(组)
2. 分类:
二、 解方程的依据-等式性质
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c≠0)
三、 解法
1.一元一次方程的解法:去分母→去括号→移项→合并同类项→
系数化成1→解。
2. 元一次方程组的解法:⑴基本思想:"消元"⑵方法:①代入法
②加减法
四、 一元二次方程
1.定义及一般形式:
2.解法:⑴直接开平方法(注意特征)
⑵配方法(注意步骤-推倒求根公式)
⑶公式法:
⑷因式分解法(特征:左边=0)
3.根的判别式:
4.根与系数顶的关系:
逆定理:若 ,则以 为根的一元二次方程是: 。
5.常用等式:
五、 可化为一元二次方程的方程
1.分式方程
⑴定义
⑵基本思想:
⑶基本解法:①去分母法②换元法(如, )
⑷验根及方法
2.无理方程
⑴定义
⑵基本思想:
⑶基本解法:①乘方法(注意技巧!!)②换元法(例, )⑷验根及方法
3.简单的二元二次方程组
由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。
六、 列方程(组)解应用题
一概述
列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什
么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
二常用的相等关系
1. 行程问题(匀速运动)
基本关系:s=vt
⑴相遇问题(同时出发):
⑵追及问题(同时出发):
若甲出发t小时后,乙才出发,而后在B处追上甲,则
⑶水中航行: ;
2. 配料问题:溶质=溶液×浓度
溶液=溶质+溶剂
3.增长率问题:
4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。
5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
三注意语言与解析式的互化
如,"多"、"少"、"增加了"、"增加为(到)"、"同时"、"扩大为(到)"、"扩大了"、……
又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
四注意从语言叙述中写出相等关系。
如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算
如,"小时""分钟"的换算;s、v、t单位的一致等。
七、应用举例(略)
第六章 一元一次不等式(组)
★重点★一元一次不等式的性质、解法
☆ 内容提要☆
1. 定义:a>b、a
2. 一元一次不等式:ax>b、ax
3. 一元一次不等式组:
4. 不等式的性质:⑴a>b←→a+c>b+c
⑵a>b←→ac>bc(c>0)
⑶a>b←→ac
⑷(传递性)a>b,b>c→a>c
⑸a>b,c>d→a+c>b+d.
5.一元一次不等式的解、解一元一次不等式
6.一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)
7.应用举例(略)
第七章 相似形
★重点★相似三角形的判定和性质
☆内容提要☆
一、本章的两套定理
第一套(比例的有关性质):
涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
第二套:
注意:①定理中"对应"二字的含义;
②平行→相似(比例线段)→平行。
二、相似三角形性质
1.对应线段…;2.对应周长…;3.对应面积…。
三、相关作图
①作第四比例项;②作比例中项。
四、证(解)题规律、辅助线
1."等积"变"比例","比例"找"相似"。
2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来
3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。
4.对比例问题,常用处理方法是将"一份"看着k;对于等比问题,常用处理办法是设"公比"为k。
5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。
五、 应用举例(略)
第八章 函数及其图象
★重点★正、反比例函数,一次、二次函数的图象和性质。
☆ 内容提要☆
一、平面直角坐标系
1.各象限内点的坐标的特点
2.坐标轴上点的坐标的特点
3.关于坐标轴、原点对称的点的坐标的特点
4.坐标平面内点与有序实数对的对应关系
二、函数
1.表示方法:⑴解析法;⑵列表法;⑶图象法。
2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
意义。
3.画函数图象:⑴列表;⑵描点;⑶连线。
三、几种特殊函数
(定义→图象→性质)
1. 正比例函数
⑴定义:y=kx(k≠0) 或y/x=k。
⑵图象:直线(过原点)
⑶性质:①k>0,…②k<0,…
2. 一次函数
⑴定义:y=kx+b(k≠0)
⑵图象:直线过点(0,b)-与y轴的交点和(-b/k,0)-与x轴的交点。
⑶性质:①k>0,…②k<0,…
⑷图象的四种情况:
3. 二次函数
⑴定义: 特殊地, 都是二次函数。
⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。 用配方法变为,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。
⑶性质:a>0时,在对称轴左侧…,右侧…;a<0时,在对称轴左侧…,右侧…。
4.反比例函数
⑴定义: 或xy=k(k≠0)。
⑵图象:双曲线(两支)-用描点法画出。
⑶性质:①k>0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。
四、重要解题方法
1.用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:
2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。
六、应用举例(略)
第九章 解直角三角形
★重点★解直角三角形
☆ 内容提要☆
一、三角函数
1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
2. 特殊角的三角函数值:
0° 30° 45° 60° 90°
sinα
cosα
tgα /
ctgα /
3. 互余两角的三角函数关系:sin(90°-α)=cosα;…
4. 三角函数值随角度变化的关系
5.查三角函数表
二、解直角三角形
1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
2. 依据:①边的关系:
②角的关系:A+B=90°
③边角关系:三角函数的定义。
注意:尽量避免使用中间数据和除法。
三、对实际问题的处理
1. 俯、仰角: 2.方位角、象限角: 3.坡度:
4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
四、应用举例(略)
第十章 圆
★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆ 内容提要☆
一、圆的基本性质
1.圆的定义(两种)
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3."三点定圆"定理
4.垂径定理及其推论
5."等对等"定理及其推论
5. 与圆有关的角:⑴圆心角定义(等对等定理)
⑵圆周角定义(圆周角定理,与圆心角的关系)
⑶弦切角定义(弦切角定理)
二、直线和圆的位置关系
1.三种位置及判定与性质:
2.切线的性质(重点)
3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵…
4.切线长定理
三、圆换圆的位置关系
1.五种位置关系及判定与性质:(重点:相切)
2.相切(交)两圆连心线的性质定理
3.两圆的公切线:⑴定义⑵性质
四、与圆有关的比例线段
1.相交弦定理
2.切割线定理
五、与和正多边形
1.圆的内接、外切多边形(三角形、四边形)
2.三角形的外接圆、内切圆及性质
3.圆的外切四边形、内接四边形的性质
4.正多边形及计算
中心角:
内角的一半: (右图)
(解Rt△OAM可求出相关元素, 、 等)
六、 一组计算公式
1.圆周长公式
2.圆面积公式
3.扇形面积公式
4.弧长公式
5.弓形面积的计算方法
6.圆柱、圆锥的侧面展开图及相关计算
七、 点的轨迹
六条基本轨迹
八、 有关作图
1.作三角形的外接圆、内切圆
2.平分已知弧
3.作已知两线段的比例中项
4.等分圆周:4、8;6、3等分
九、 基本图形
十、 重要辅助线
1.作半径
2.见弦往往作弦心距
3.见直径往往作直径上的圆周角
4.切点圆心莫忘连
5.两圆相切公切线(连心线)
6.两圆相交公共弦
看过初三年级上册数学知识点归纳总结的还看了:
浏览量:2
下载量:0
时间:
中考即将到来,教师们要如何准备试题供学们们参考呢?接下来是读文网小编为大家带来的初三年级下册数学知识点归纳总结,供大家参考。
1 二次函数及其图像
二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:
一般式
y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;
顶点式
y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;
重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1*x2) (y1为截距)
求根公式
二次函数表达式的右边通常为二次三项式。
求根公式
x是自变量,y是x的二次函数
x1,x2=[-b±(√(b^2-4ac))]/2a
(即一元二次方程求根公式)
求根的方法还有因式分解法和配方法
在平面直角坐标系中作出二次函数y=2x的平方的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。
不同的二次函数图像
如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
注意:草图要有 1本身图像,旁边注明函数。
2画出对称轴,并注明X=什么
3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质
轴对称
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
顶点
2.抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b^2;)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2;-4ac=0时,P在x轴上。
开口
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
决定对称轴位置的因素
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号
当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
决定抛物线与y轴交点的因素
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
抛物线与x轴交点个数
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在
{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
特殊值的形式
7.特殊值的形式
①当x=1时 y=a+b+c
②当x=-1时 y=a-b+c
③当x=2时 y=4a+2b+c
④当x=-2时 y=4a-2b+c
二次函数的性质
8.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,
正无穷);②[t,正无穷)
奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+k[顶点式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)
对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X
的增大而减小
此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连
用)。
交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。
26.2 用函数观点看一元二次方程
1. 如果抛物线 与x轴有公共点,公共点的横坐标是 ,那么当 时,函数的值是0,因此 就是方程的一个根。
2. 二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。
26.3 实际问题与二次函数
在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。
看过初三年级下册数学知识点归纳总结的还看了:
浏览量:3
下载量:0
时间:
中考即将到来,同学们一定要重视起来,认真复习数学的知识点。接下来是读文网小编为大家带来的2017年上海中考数学的知识点大汇总,供大家参考。
知识点1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常数项是-2.
2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.
知识点2:直角坐标系与点的位置
1.直角坐标系中,点A(3,0)在y轴上。
2.直角坐标系中,x轴上的任意点的横坐标为0.
3.直角坐标系中,点A(1,1)在第一象限.
4.直角坐标系中,点A(-2,3)在第四象限.
5.直角坐标系中,点A(-2,1)在第二象限.
知识点3:已知自变量的值求函数值
1.当x=2时,函数y=的值为1.
2.当x=3时,函数y=的值为1.
3.当x=-1时,函数y=的值为1.
知识点4:基本函数的概念及性质
1.函数y=-8x是一次函数.
2.函数y=4x+1是正比例函数.
3.函数是反比例函数.
4.抛物线y=-3(x-2)2-5的开口向下.
5.抛物线y=4(x-3)2-10的对称轴是x=3.
6.抛物线的顶点坐标是(1,2).
7.反比例函数的图象在第一、三象限.
知识点5:数据的平均数中位数与众数
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
知识点6:特殊三角函数值
1.cos30°= .
2.sin260°+ cos260°= 1.
3.2sin30°+ tan45°= 2.
4.tan45°= 1.
5.cos60°+ sin30°= 1.
知识点7:圆的基本性质
1.半圆或直径所对的圆周角是直角.
2.任意一个三角形一定有一个外接圆.
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.
4.在同圆或等圆中,相等的圆心角所对的弧相等.
5.同弧所对的圆周角等于圆心角的一半.
6.同圆或等圆的半径相等.
7.过三个点一定可以作一个圆.
8.长度相等的两条弧是等弧.
9.在同圆或等圆中,相等的圆心角所对的弧相等.
10.经过圆心平分弦的直径垂直于弦.
知识点8:直线与圆的位置关系
1.直线与圆有唯一公共点时,叫做直线与圆相切.
2.三角形的外接圆的圆心叫做三角形的外心.
3.弦切角等于所夹的弧所对的圆心角.
4.三角形的内切圆的圆心叫做三角形的内心.
5.垂直于半径的直线必为圆的切线.
6.过半径的外端点并且垂直于半径的直线是圆的切线.
7.垂直于半径的直线是圆的切线.
8.圆的切线垂直于过切点的半径.
知识点9:圆与圆的位置关系
1.两个圆有且只有一个公共点时,叫做这两个圆外切.
2.相交两圆的连心线垂直平分公共弦.
3.两个圆有两个公共点时,叫做这两个圆相交.
4.两个圆内切时,这两个圆的公切线只有一条.
5.相切两圆的连心线必过切点.
知识点10:正多边形基本性质
1.正六边形的中心角为60°.
2.矩形是正多边形.
3.正多边形都是轴对称图形.
4.正多边形都是中心对称图形.
猜你感兴趣:
浏览量:3
下载量:0
时间:
经历了一学期的努力奋战,同学们要如何准备复习呢?接下来是读文网小编为大家带来的2016年中考数学最有用的八个知识点汇总,供大家参考。
1、 过两点有且只有一条直线
2 、两点之间线段最短
3 、同角或等角的补角相等
4 、同角或等角的余角相等
5、 过一点有且只有一条直线和已知直线垂直
6 、直线外一点与直线上各点连接的所有线段中,垂线段最短
7 、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 、同位角相等,两直线平行
10 、内错角相等,两直线平行
11 、同旁内角互补,两直线平行
12 、两直线平行,同位角相等
13、 两直线平行,内错角相等
14 、两直线平行,同旁内角互补
15 、定理 三角形两边的和大于第三边
16、 推论 三角形两边的差小于第三边
17、 三角形内角和定理 三角形三个内角的
和等于180°
18 、推论1 直角三角形的两个锐角互余
19、 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 、全等三角形的对应边、对应角相等
22 、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 、定理1 在角的平分线上的点到这个角的两边的距离相等
28、 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 、角的平分线是到角的两边距离相等的所有点的集合
30、 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 、推论1 三个角都相等的三角形是等边三角形
36 、推论 2 有一个角等于60°的等腰三角形是等边三角形
37 、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 、直角三角形斜边上的中线等于斜边上的一半
39 、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、 定理1 关于某条直线对称的两个图形是全等形
43 、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关a^2+b^2=c^2 ,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
看过2016年中考数学最有用的八个知识点汇总的还看了:
浏览量:3
下载量:0
时间:
初三有哪些知识点是必记的呢?接下来是读文网小编为大家带来的初三物理知识点必记,供大家参考。
记住的常量
1.光(电磁波)在真空中传播得最快,c=3× 105Km/s=3×108m /s。光在其它透明物质中传播比在空气中传播都要慢
2.15℃的空气中声速:340m/s,振动发声,声音传播需要介质,声音在真空中不能传播。一般声音在固体中传播最快,液体中次之,气体中最慢。
3.水的密度:1.0×103Kg/m3=1g/cm3=1.0Kg/dm3。
1个标准大气压下的水的沸点:100℃,冰的熔点O℃,
水的比热容4.2×103J/(Kg·℃)。
4.g=9.8N/Kg,特殊说明时可取10 N/Kg
5.一个标准大气压=76cmHg==760mmHg=1.01×105Pa=10.3m高水柱。
6.几个电压值:1节干电池1.5V,一只铅蓄电池2V。照明电路电压220V,安全电压不高于36V。
7.1度=1千瓦·时(kwh)=3.6×106J。
8.常见小功率用电器:电灯、电视、冰箱、电风扇;
常见大功率用电器:空调、电磁炉、电饭堡、微波炉、电烙铁。
物理量的国际单位
长度(L或s):米(m)
时间(t):秒(s)面积(S):米2(m2)体积(V):米3(m3)速度(v):米/秒(m/s)温度(t):摄氏度(℃)(这是常用单位)
质量(m):千克(Kg)密度(ρ):千克/米3(Kg/m3)。力(F):牛顿(N)功(能,电功,电能)(W):焦耳(J)
功率(电功率)(P):瓦特(w)压强(p):帕斯卡(Pa)机械效率(η)热量(电热)(Q):焦耳(J)
比热容(c):焦耳/千克 摄氏度(J/Kg℃)热值(q):J/kg或J/m3
电流(I):安培(A)电压(U):伏特(V) 电阻(R):欧姆(Ω)。
单位换算
1nm=10-9m,1mm=10-3m,1cm=10-2m;1dm=0.1m,1Km=103m,1h=3600s,1min=60s,
1Kwh=3.6×106J.1Km/h=5/18m/s=1/3.6m/s,1g/cm3=103Kg/m3,1cm2=10-4m2,
1cm3=1mL=10-6m3,1dm3=1L=10-3m3,
词冠:m毫(10-3),μ微(10-6),K千(103),M兆(106)
公式
1.速度v=s/t; 2.密度ρ=m/v; 3.压强P=F/s=ρgh;
4.浮力F=G排=ρ液gV排=G(悬浮或漂浮)=F向上-F向下=G-F’ ;
5.杠杆平衡条件:F1L1=F2L2;6.功w=Fs=Gh(克服重力做功)=Pt;7.功率p=W/t=Fv;
8.机械效率η=W有/W总=Gh/Fs=G/nF=G/(G+G动) =fL/Fs(滑轮组水平拉物体克服摩擦力作功);
9.热量:热传递吸放热Q=cm△t;燃料完全燃烧Q=mq=Vq;电热:Q= I2Rt
10.电学公式:电流:I=U/R=P/U 电阻:R=U/I=U2/P 电压:U=IR=P/I
电功:W=Pt =UIt =I2Rt=U2t/R 电热:Q= I2Rt(焦耳定律)=UIt==U2t/R
电功率:P=W/t= UI=I2R=U2/R
串联电路特点:I=I1=I2,U=U1+U2,R=R1+R2 U1:U2=P1:P2=Q1:Q2=W1:W2=R1:R2
并联电路特点:I=I1+I2,U=U1=U2,1/R=1/R1+1/R2 I1:I2=P1:P2=Q1:Q2=W1:W2=R2:R1
物理学家与贡献
姓名 贡献
安培: 安培定则(右手定则)
牛顿(力) 牛顿第一运动定律、色散、经典物理奠基人
托里拆利 托里拆利实验→首先测出大气压的值
沈括 固体传声、磁偏角
奥斯特 电流的磁效应
法拉第 电磁感应现象
欧姆(电阻) 欧姆定律
焦耳(能) 焦耳定律
阿基米德 阿基米德原理(浮力) 、 杠杆平衡原理
卢瑟福 α粒子散射实验:原子行星(核式)模型
重要概念、规律和理论
1、记住六种物态变化的名称及吸热还是放热。
2、记住六个物理规律:(1)牛顿第一定律(惯性定律)(2)光的反射定律(3)光的折射规律(4)能量转化和守恒定律(5)欧姆定律(6)焦耳定律。记住两个原理:(1)阿基米德原理(2)杠杆平衡原理
3、质量是物体的属性:不随形状、地理位置、状态和温度的改变而改变;而重力会随位置而变化。密度是物质的特性,与m,v无关,但会随状态、温度而改变;惯性是物体的属性,只与物体的质量有关,与物体受力与否、运动与否、运动快慢都无关;比热容是物质的特性:只与物质种类、状态有关,与质量和温度无关;电阻是导体的属性:与物质种类、长短、粗细、温度有关,与电流、电压无关。
4、科学探究有7个要素:提出问题、猜想与假设、制定计划与设计实验、进行实验收集证据、分析论证、评估、交流与合作.
5、物理方法是在研究物理现象得出规律的过程中体现出来的,主要有类比法、等效替代法、假设法、控制变量法、建立理想模型法、转换法等。如控制变量法:在研究问题时,只让其中一个因素(即变量)变化,而保持其他因素不变(如探究I与U、R的关系、探究蒸发与什么因素有关)。等效替代法(如求合力、求总电阻),模型法(如原子的核式结构模型、磁感线,光线),类比法(如电流与水流、电压与水压)。转换法(电流表的原理,用温度计测温度,小磁场检验磁场)
6、电学实验中应注意的几点:①在连接电路的过程中,开关处于断开状态.②在闭合开关前,滑动变阻器处于最大阻值状态,接法要一上一下.③电压表应并联在被测电阻两端,电流表应串联在电路中.④电流表和电压表接在电路中必须使电流从正接线柱进入,从负接线柱流出。
7、会基本仪器工具的使用:刻度尺、钟表、液体温度计、天平(水平调节、横粱平衡调节、游码使用)、量筒、量杯、弹簧测力计、密度计、电流表、电压表,滑动变阻器、测电笔、电能表。
8、传播介质:声音:除真空外的一切固、液、气体. 光:真空、空气、水、玻璃等透明物质
9、常见的(1)晶体(有一定熔点):海波、冰、石英、水晶、食盐、明矾、萘、各种金属
(2)非晶体:松香、玻璃、蜂蜡、沥青
10、常见的(1)导体:金属、石墨、人体、大地、酸、碱、盐的水溶液
(2)绝缘体:橡胶、玻璃、陶瓷、塑料、油
常见的导热体:金属,不良导热体:空气,水,木头,棉花等。
常见的新材料有纳米材料、超导材料、记忆合金、隐形材料。
11、运动和力的关系:
①.原来静止的物体:如果a受平衡力:保持静止。b受非平衡力:沿合力方向运动
②.原来运动的物体:如果a受平衡力:保持匀速直线运动.b受非平衡力:如果力的方向与运动方向相同,则物体做加速运动。如果力的方向与运动方向相反,则物体做减速运动。如果力的方向与运动方向不在一条直线上,则物体运动方向改变。
物体如果不受力或受平衡力将保持平衡状态,物体静止或做匀速直线运动说明物体受力平衡,合力为0;物体受非平衡力将改变运动状态。
12、家庭电路的连接方法:
①各用电器和插座之间都是并联,
②开关一端接火线,一端接灯泡,
③螺口灯泡的螺旋套要接在零线上
④保险丝接在火线上。
⑤三孔插座的接法是左零右火中接地。
看过初三物理知识点必记的还看了:
浏览量:4
下载量:0
时间:
在没一次考试结束后,要懂得反思,接下来是读文网小编为大家带来的初三数学期中考试反思,供大家参考。
在刚刚结束的期中考试中,我们初三年级c班的数学试卷并不难,我班数学平均分为90分。在这次考试中,原本一些不及格的学生,数学成绩却考到了60分以上,主要的原因:其一是他们自身的努力,其二是降低了试卷的难度。从学生答题情况来看,基础知识掌握得较好,概念理解得较透彻,计算题和解方程的准确率较高,但部分学生理解能力较差,应用题审题不清,导致出现不少错误。几何证明题分析问题的思路上不去,分析问题的方法掌握得不够好。另外,部分学生学习习惯较差,接受能力较差,碰到思维力度较强的题目就无法解答。在今后的教学中,要特别注重对发展不理想学生的辅导,注重对学生理解能力、分析问题解决问题能力的培养。
在今后的教学中,我要在以下几个方面多下功夫:
一、树立每一位学生学习的自信心,培养学生的学习兴趣,正确的学习方法。
引导学生逐渐认识实际生活中的问题。如结合信息科技,为学生创设熟悉的教学情境,让学生认识到生活中处处存在数学问题,数学来源于生活又应用于生活,激发学生学习数学的兴趣和认识学习数学的必要性,调动学生学习数学的主观能动性。
二、指导学生解决问题时,要留给学生思考的余地。
学生用数学不是靠教师“教会”的,而是学生“想懂”的。古人云“授之以鱼不如授之以渔”。在解决实际问题中充分发挥学生灵活运用数学知识解决问题的能力,使学生的思维得到充分的发展。教学过程当中教师要注意让学生亲身感受数学的由来及关注知识的生成。
三、结合学生的基础和教学内容因材施教。
在教学中和学生经常沟通,了解学生的学习感悟,时刻调整自己的教学策略。
四、两手抓两手都要硬。
在提高课堂教学质量的同时,抓好学生的管理,特别是关注习惯差的学生。重视反馈环节,课后注意作业完成情况,集体性批阅与个别面批相结合。
“不是锤的敲打,而是水的抚摸,才使鹅卵石这般光滑剔透。”作为一个老师,如果在威严中不失宽容,多总结教学中的得与失,多找自身的原因,教育学生才会真正有效。
初三数学期中考试反思(二)
一、试题评价:
试题紧扣教材、课标、考试说明;知识点全、细、覆盖面广,重点突出,取舍合理;试题的设计数量合理,阅读量适中,呈现形式新,具有开放性,联系实际、日常生活、技术与社会,注重原题变式和改变;注重对“双基”和实验教学的考查,注重综合能力考查,注重用物理知识解决实际问题能力以及创新能力、探究性学习能力、分析计算能力、物理的学科素养的考查;但这份题过于注重基础,试题的区分度不大。
二、试题主要特点:
(1)面向全体,注重能力考查
此次测试,是以学生的发展为本,根据我市的教学实际,面向全体学生,努力使不同层面的学生都获得较理想的成绩。采取低起点、小坡度、广覆盖的命题原则,(如计算题)主要考查学生对基础知识和基本技能的掌握情况,适当考查学生分析解决问题的能力,(如对基本概念的考察)突出其水平测试功能,采用活用教材、注重探究、关注过程、开放创新的方式创设新题,(如11题)以此来考查学生灵活运用所学知识分析和解决问题的能力、实践与创新能力,体现其选拔功能。
(2)对教学的导向作用
考试的改革促进教学的改革,考试的改革促进课堂教学的改革。此次测试,做到“扣紧范围、活用教材、体现课改,联系实际、开放有度、着眼基础、注意能力、指导教学、有利创新”。对我校后期教学具有很好的向导作用。
(3)体现新课改精神
此次测试坚持稳中求变、变中求新,难度相对稳定。考查内容尊重学生的实际,关注学生今后发展所需要的最基础的物理知识和技能,重视知识之间的联系,如卷中第25题;试题的素材、内容方面体现考查学生物理科学素养(知识和技能、过程与方法、情感态度与价值观),如第10小题等;加强对实验探究为核心的科学探究活动和科学探究能力的考查,第20、21、22、23题等。
(4)探究创新,突出学科特色,联系实际,学以致用。此次试题中,联系社会实际、生活实际和现代科学的有第1、2、3、5题,体现了物理的价值在于运用到现实生活中去的真谛。这些紧密联系社会、日常生活和科技发展的物理知识,拓宽了学生的知识视野,激发了学生的学习兴趣和热情,增强了学生的社会责任感。
注重学习过程,引导学法。注重学习过程,寻求学习规律,学生在探究性学习过程中,改变过去强调接受学习、死记硬背、机械训练的现象,不只是停留于单纯的知识的记忆,而是主动地参与知识的建构,并通过不断反思学习过程,悟出学习方法,学会学习。如第25题通过学生对所学物理知识的归纳,引导学生回味物理学习过程,悟法开窍。
三、答卷中主要问题的原因分析
1.基础知识和基本技能不扎实。表现在对物理语言表述不清;对物理公式不能正确理解;对物理概念混淆不清,如21题、24题,计算能力非常薄弱如6、25题;不会分析物理图像如6题等等。
2.实验基本技能差。
3.能力与方法问题。阅读理解、综合分析与归纳、语言表达、科学探究等能力较差,对物理学科中常用的科学方法不熟悉。表现在不会进行探究性学习;根据现象总结结论的能力较差;如21、22、23题。
4.用物理知识解决实际问题的能力较差。表现在不能根据所设计的问题情境,结合自身体验来思考问题,寻求解决问题的方法,如13题
5.语言表述不清楚,逻辑性较差,缺乏条理性。表现在不能用精练的、准确的语言来物理现象;回答问题不能抓住重点问题去阐述,不能答出关键点。如17、21、22题。
6.计算能力薄弱。
四、我的感受:
1、中考命题科学严谨规范,使得任何猜题押题的行为纯属徒劳。但我们如果能够在平时的教学中,集中精力研究“考试说明”并梳理其中的知识点,做到有的放矢,重点突出,是肯定能取得事半功倍的效果的。
2、命题依据新课程标准,逐步实现由以考察知识为主向以考查能力为主,在继续加强“双基”考查的同时,重视过程方法和情感态度价值观目标的考查;考试内容加强与社会实际的联系,增强问题的真实性和情景性,重视考查学生在真实情景中提出、研究、解决问题的能力和收集、整合、运用信息的能力,开放性、探究性题目出现并逐渐增多,考查学生个性,培养学生的独立思考、发散思维和创新能力,考试的难度逐步降低(一般控制在0.7左右),考查面越来越广,引导我们教学面向全体。
3、在教学过程中我认为教学起点不要过高,不可只注重能力拔高,忽视基础,忽视物理的双基教学;不可只注重资料,忽视教材研究,挖掘教材到位;不可只注重题海战术,着眼点放在做题选题上,忽视原题研究、变式和改变,忽视规律总结和学法总结;不可只注重复习的时间长短,忽视新授课中基础掌握和能力培养;忽视对考试说明、课标学习、研究和落实,平常的教学不可只注重知识的结果,忽视知识的发生、发展过程,忽视规范训练(物理用语规范、书写认真、语言科学规范、逻辑严密、答题条理、计算题解题步骤规范等)。
看过初三物理期末考试反思总结的还看了:
浏览量:2
下载量:0
时间:
中考复习时间所剩不多了,为帮助同学们更好复习数学,接下来是读文网小编为大家带来的关于中考数学知识点口诀大全,希望会给大家带来帮助。
函数
合并同类项,法则不能忘,只求系数和,字母、指数不变样。
恒等变换
两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
平方差公式
平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解
一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
“代入”口决
挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)。
单项式运算
加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤
去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集
大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集
大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
分式方程的解法步骤
同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。
最简根式的条件
最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征
坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
象限角的平分线
象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线
平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
对称点坐标
对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围
分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律
若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
一次函数图像与性质口诀
一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
看过中考数学知识点口诀大全的还看了:
浏览量:3
下载量:0
时间:
中考冲刺数学知识点有哪些呢?接下来是读文网小编为大家带来的关于初三数学备战中考知识点大全,希望会给大家带来帮助。
三、常用数学公式
公式分类 公式表达式
乘法与因式分解 a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
一元二次方程的解 -b+√(b2-4ac)/2a
-b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a
X1*X2=c/a 注:韦达定理
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R
注:其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB
注:角B是边a和边c的夹角
初中几何常见辅助线作法歌诀汇编
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
浏览量:3
下载量:0
时间:
滴水穿石,聚沙成塔。这说的是每一个点滴积累而造就的力量。学习也同样:若我们平常多看看中考知识点,到我们面临中考的时候,才能厚积薄发,获得成功,接下来是读文网小编为大家带来的关于中考数学知识点汇总,希望会给大家带来帮助。
知识点1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常数项是-2.
2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.
知识点2:直角坐标系与点的位置
1.直角坐标系中,点A(3,0)在y轴上.
2.直角坐标系中,x轴上的任意点的横坐标为0.
3.直角坐标系中,点A(1,1)在第一象限.
4.直角坐标系中,点A(-2,3)在第四象限.
5.直角坐标系中,点A(-2,1)在第二象限.
知识点3:已知自变量的值求函数值
1.当x=2时,函数y=的值为1.
2.当x=3时,函数y=的值为1.
3.当x=-1时,函数y=的值为1.
知识点4:基本函数的概念及性质
1.函数y=-8x是一次函数.
2.函数y=4x+1是正比例函数.
3.函数是反比例函数.
4.抛物线y=-3(x-2)2-5的开口向下.
5.抛物线y=4(x-3)2-10的对称轴是x=3.
6.抛物线的顶点坐标是(1,2).
7.反比例函数的图象在第一、三象限.
知识点5:数据的平均数中位数与众数
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
知识点6:特殊三角函数值
1.sin260°+cos260°=1.
2.2sin30°+tan45°=2.
3.tan45°=1.
4.cos60°+sin30°=1.
知识点7:圆的基本性质
1.半圆或直径所对的圆周角是直角.
2.任意一个三角形一定有一个外接圆.
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆
心,定长为半径的圆.
4.在同圆或等圆中,相等的圆心角所对的弧相等.
5.同弧所对的圆周角等于圆心角的一半.
6.同圆或等圆的半径相等.
7.过三个点一定可以作一个圆.
8.长度相等的两条弧是等弧.
9.在同圆或等圆中,相等的圆心角所对的弧相等.
10.经过圆心平分弦的直径垂直于弦.
知识点8:直线与圆的位置关系
1.直线与圆有唯一公共点时,叫做直线与圆相切.
2.三角形的外接圆的圆心叫做三角形的外心.
3.弦切角等于所夹的弧所对的圆心角.
4.三角形的内切圆的圆心叫做三角形的内心.
5.垂直于半径的直线必为圆的切线.
6.过半径的外端点并且垂直于半径的直线是圆的切线.
7.垂直于半径的直线是圆的切线.
8.圆的切线垂直于过切点的半径.
看过中考数学知识点汇总的还看了:
浏览量:2
下载量:0
时间: