为您找到与小学数学创新思维的培养相关的共200个结果:
浏览量:3
下载量:0
时间:
浏览量:3
下载量:0
时间:
浏览量:3
下载量:0
时间:
浏览量:2
下载量:0
时间:
浏览量:3
下载量:0
时间:
浏览量:2
下载量:0
时间:
浏览量:5
下载量:0
时间:
浏览量:4
下载量:0
时间:
浏览量:2
下载量:0
时间:
浏览量:3
下载量:0
时间:
创新思维是创新过程中的思维活动,是指具有一定的自身价值或认识意义的新颖独到的思维活动。在数学教学中,大量的创新思维主要指“再发现”式的,通过学生自己的独立思维活动解决问题的过程。我认为,数学创新思维的培养,其关键在于激发学生创造性思维的发生机制,可以从下列几个方面展开:
怎样培养学生的观察力?首先,要创设良好的问题情景,培养学生深厚的观察兴趣;其次,在观察前,要给学生提出明确具体的目的、任务和要求;第三,要引导学生根据观察的对象有序进行观察,及时对观察结果进行分析总结;第四,要科学地运用直观教具和现代教学技术,以支持学生对研究问题做细致深入的观察。
在《三角形的认识》教学中,学生对“围成”理解有困难。教师可以准备10厘米、16厘米、8厘米、6厘米的小棒各一根,要求学生选择其中三根摆成一个三角形。在拼摆中,学生发现选择10厘米、16厘米、8厘米和10厘米、8厘米、6厘米的小棒能拼成三角形,而选择10厘米、16厘米、6厘米和16厘米、8厘米、6厘米的小棒却不能拼成三角形。借助图形,学生不但直观地感知了三角形“两边之和大于第三边”的道理,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰地认识。
学习过程是对信息进行加工、储存和在需要时提取出来加以运用的过程。
教学过程中首先要使学生掌握数学基本知识和基本技能,并使所学知识与方法系统化、条理化。
数学想象一般有以下两个基本要素:第一,因为想象往往是一种知识的连结,所以要有扎实的基础知识和丰富的经验的支持;第二,要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。因此,培养学生的想象力,首先要使学生学好有关的基础知识,其次,要引导学生寻找新旧知识的联系点,诱发学生的创选性想象。
例如在《平行四边形面积》的教学中,教师利用多媒体呈现学生熟悉的情景:菜园里各种蔬菜郁郁葱葱,分别种在划成不同形状的地块上。先出示种有青菜和白菜的地块,分别呈正方形和长方形,要求算一算它们的种植面积,学生运用已学的知识很快解决了问题。接着出示一块形如平行四边形的萝卜地,让学生猜一猜它的面积大概是多少?平行四边形的面积应怎么求?学生对求知领域的探索非常好奇,思维的积极性被激发,纷纷根据前面的知识作出如下的猜测:有的猜面积是长边和短边长度的积,有的猜面积是长边和它高的积,有的猜面积是短边和它的高的积,还有的说想办法拼成一个长方形,这样就可以算出来……教师一一板书出来,对学生的思维结果给予必要的肯定,进一步激发学生主动探索的热情和欲望。
课堂教学要鼓励学生大胆创新,勇于求异,激发学生创新欲望。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生多元化地思考,在探索与求异中发现和创新。发散思维的训练可以通过对数学问题的演变进行变式训练,具体可以采用如下方式:
1. 一题多解式,对同一问题尽可能地鼓励学生超越常规,提出多种设想和解答。一题多解的例子很多,它不仅可以加深学生对所学知识的理解,达到熟练运用的目的,更重要的是扩大学生认识的空间,激发灵感,提高思维的创造性。
2. 一题多变式,伽利略曾经说过“科学是在不断改变思维角度的探索中前进的”。故而课堂教学要常新、善变,通过原题目延伸出更多具有相关性、相似性、相反性的新问题,深刻挖掘例题和练习题教育功能,培养学生创新能力。
3. 多题一解式,学生在学习数学时常陷在无穷的题海中,但实际上许多问题具有共性,对这样的问题不断总结、积累,能加深学生对知识内在本质的理解,提高分析问题、解决问题的能力。
浏览量:2
下载量:0
时间:
代理协议也称代理合同,它是用以明确委托人和代理人之间权利与义务的法律文件。今天读文网小编要与大家分享的是:在数学教学中培养学生的创新思维相关论文。具体内容如下,欢迎阅读:
在数学教学中培养学生的创新思维
创新思维是创新过程中的思维活动,是指具有一定的自身价值或认识意义的新颖独到的思维活动。在数学教学中,大量的创新思维主要指“再发现”式的,通过学生自己的独立思维活动解决问题的过程。我认为,数学创新思维的培养,其关键在于激发学生创造性思维的发生机制,可以从下列几个方面展开:
一、 在课堂教学中创设情境,引导和培养学生的观察能力
怎样培养学生的观察力?首先,要创设良好的问题情景,培养学生深厚的观察兴趣;其次,在观察前,要给学生提出明确具体的目的、任务和要求;第三,要引导学生根据观察的对象有序进行观察,及时对观察结果进行分析总结;第四,要科学地运用直观教具和现代教学技术,以支持学生对研究问题做细致深入的观察。
在《三角形的认识》教学中,学生对“围成”理解有困难。教师可以准备10厘米、16厘米、8厘米、6厘米的小棒各一根,要求学生选择其中三根摆成一个三角形。在拼摆中,学生发现选择10厘米、16厘米、8厘米和10厘米、8厘米、6厘米的小棒能拼成三角形,而选择10厘米、16厘米、6厘米和16厘米、8厘米、6厘米的小棒却不能拼成三角形。借助图形,学生不但直观地感知了三角形“两边之和大于第三边”的道理,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰地认识。
二、 收储足够的信息,引导学生展开丰富的想象,激发学生主动探索的欲望
学习过程是对信息进行加工、储存和在需要时提取出来加以运用的过程。
教学过程中首先要使学生掌握数学基本知识和基本技能,并使所学知识与方法系统化、条理化。
数学想象一般有以下两个基本要素:第一,因为想象往往是一种知识的连结,所以要有扎实的基础知识和丰富的经验的支持;第二,要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。因此,培养学生的想象力,首先要使学生学好有关的基础知识,其次,要引导学生寻找新旧知识的联系点,诱发学生的创选性想象。
例如在《平行四边形面积》的教学中,教师利用多媒体呈现学生熟悉的情景:菜园里各种蔬菜郁郁葱葱,分别种在划成不同形状的地块上。先出示种有青菜和白菜的地块,分别呈正方形和长方形,要求算一算它们的种植面积,学生运用已学的知识很快解决了问题。接着出示一块形如平行四边形的萝卜地,让学生猜一猜它的面积大概是多少?平行四边形的面积应怎么求?学生对求知领域的探索非常好奇,思维的积极性被激发,纷纷根据前面的知识作出如下的猜测:有的猜面积是长边和短边长度的积,有的猜面积是长边和它高的积,有的猜面积是短边和它的高的积,还有的说想办法拼成一个长方形,这样就可以算出来……教师一一板书出来,对学生的思维结果给予必要的肯定,进一步激发学生主动探索的热情和欲望。
三、 加强思维训练,引导提高学生勇于求异的创新意识
课堂教学要鼓励学生大胆创新,勇于求异,激发学生创新欲望。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生多元化地思考,在探索与求异中发现和创新。发散思维的训练可以通过对数学问题的演变进行变式训练,具体可以采用如下方式:
1. 一题多解式,对同一问题尽可能地鼓励学生超越常规,提出多种设想和解答。一题多解的例子很多,它不仅可以加深学生对所学知识的理解,达到熟练运用的目的,更重要的是扩大学生认识的空间,激发灵感,提高思维的创造性。
2. 一题多变式,伽利略曾经说过“科学是在不断改变思维角度的探索中前进的”。故而课堂教学要常新、善变,通过原题目延伸出更多具有相关性、相似性、相反性的新问题,深刻挖掘例题和练习题教育功能,培养学生创新能力。
3. 多题一解式,学生在学习数学时常陷在无穷的题海中,但实际上许多问题具有共性,对这样的问题不断总结、积累,能加深学生对知识内在本质的理解,提高分析问题、解决问题的能力。
【相关推荐】
1.
2.
3.
4.
5.
浏览量:2
下载量:0
时间:
代理协议也称代理合同,它是用以明确委托人和代理人之间权利与义务的法律文件。今天读文网小编要与大家分享的是:在数学教学中培养学生的创新思维相关论文。具体内容如下,欢迎阅读:
在数学教学中培养学生的创新思维
创新思维是创新过程中的思维活动,是指具有一定的自身价值或认识意义的新颖独到的思维活动。在数学教学中,大量的创新思维主要指“再发现”式的,通过学生自己的独立思维活动解决问题的过程。我认为,数学创新思维的培养,其关键在于激发学生创造性思维的发生机制,可以从下列几个方面展开:
一、 在课堂教学中创设情境,引导和培养学生的观察能力
怎样培养学生的观察力?首先,要创设良好的问题情景,培养学生深厚的观察兴趣;其次,在观察前,要给学生提出明确具体的目的、任务和要求;第三,要引导学生根据观察的对象有序进行观察,及时对观察结果进行分析总结;第四,要科学地运用直观教具和现代教学技术,以支持学生对研究问题做细致深入的观察。
在《三角形的认识》教学中,学生对“围成”理解有困难。教师可以准备10厘米、16厘米、8厘米、6厘米的小棒各一根,要求学生选择其中三根摆成一个三角形。在拼摆中,学生发现选择10厘米、16厘米、8厘米和10厘米、8厘米、6厘米的小棒能拼成三角形,而选择10厘米、16厘米、6厘米和16厘米、8厘米、6厘米的小棒却不能拼成三角形。借助图形,学生不但直观地感知了三角形“两边之和大于第三边”的道理,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰地认识。
二、 收储足够的信息,引导学生展开丰富的想象,激发学生主动探索的欲望
学习过程是对信息进行加工、储存和在需要时提取出来加以运用的过程。
教学过程中首先要使学生掌握数学基本知识和基本技能,并使所学知识与方法系统化、条理化。
数学想象一般有以下两个基本要素:第一,因为想象往往是一种知识的连结,所以要有扎实的基础知识和丰富的经验的支持;第二,要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。因此,培养学生的想象力,首先要使学生学好有关的基础知识,其次,要引导学生寻找新旧知识的联系点,诱发学生的创选性想象。
例如在《平行四边形面积》的教学中,教师利用多媒体呈现学生熟悉的情景:菜园里各种蔬菜郁郁葱葱,分别种在划成不同形状的地块上。先出示种有青菜和白菜的地块,分别呈正方形和长方形,要求算一算它们的种植面积,学生运用已学的知识很快解决了问题。接着出示一块形如平行四边形的萝卜地,让学生猜一猜它的面积大概是多少?平行四边形的面积应怎么求?学生对求知领域的探索非常好奇,思维的积极性被激发,纷纷根据前面的知识作出如下的猜测:有的猜面积是长边和短边长度的积,有的猜面积是长边和它高的积,有的猜面积是短边和它的高的积,还有的说想办法拼成一个长方形,这样就可以算出来……教师一一板书出来,对学生的思维结果给予必要的肯定,进一步激发学生主动探索的热情和欲望。
三、 加强思维训练,引导提高学生勇于求异的创新意识
课堂教学要鼓励学生大胆创新,勇于求异,激发学生创新欲望。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生多元化地思考,在探索与求异中发现和创新。发散思维的训练可以通过对数学问题的演变进行变式训练,具体可以采用如下方式:
1. 一题多解式,对同一问题尽可能地鼓励学生超越常规,提出多种设想和解答。一题多解的例子很多,它不仅可以加深学生对所学知识的理解,达到熟练运用的目的,更重要的是扩大学生认识的空间,激发灵感,提高思维的创造性。
2. 一题多变式,伽利略曾经说过“科学是在不断改变思维角度的探索中前进的”。故而课堂教学要常新、善变,通过原题目延伸出更多具有相关性、相似性、相反性的新问题,深刻挖掘例题和练习题教育功能,培养学生创新能力。
3. 多题一解式,学生在学习数学时常陷在无穷的题海中,但实际上许多问题具有共性,对这样的问题不断总结、积累,能加深学生对知识内在本质的理解,提高分析问题、解决问题的能力。
【相关推荐】
1.
2.
3.
4.
5.
浏览量:2
下载量:0
时间:
思维需要时间,创新需要机会,假如我们设计的问题仅仅是“对不对”,“是不是”,是学生不需要独立思考或深入思考就能够解决的问题,那学生就没有思考的机会,就不可能创新。今天读文网小编要与大家分享的是:放飞思维培养学生的创新能力相关数学论文。具体内容如下,欢迎阅读:
放飞思维 培养学生的创新能力
21世纪是以知识创新和应用为重要特征的知识经济时代.培养学生具备创新精神与实践能力,是信息化社会的需要,也是人的个性发展价值的需求.创新和实践的最终目的,是使学生的人格得到完善和塑造,使学生获得生命的全部意义.新课程改革把改革学习方式作为显著特征和根本任务,而改变学习方式的根本目的是为了培养学生创新精神和实践能力,实现传授知识,发展能力和培养创新三者水乳交融,让课堂教学充满创新活力.
那么,如何才能让学生的创新能力在课堂学习中得到培养,几年来教学工作经验,教训和对新课程理念的学习,我体会到:数学课堂学习应该是面向全体学生,启迪思维,放飞思维,培养学生的创新能力.
一、用问题打开学生思维的大门
一次,在准备上《一元二次方程根与系数的关系和判别式》复习课前,我写下了4个问题让学生思考:
1.你认为我们今天所复习的这一节课中,应掌握哪些内容?
2.掌握这些内容有什么方法?
3.你觉得初三中考时应如何考这一知识点?
4.请你自编一道考试题目.
初三的复习课枯燥无味,学生每天重复着老师安排下来的“讲—练—评”的固定模式.学生看见这四个问题就觉得很新鲜.虽然开始不知从何入手,但经过老师点拨,同学之间的讨论交流,大家很快地投入进去,开开心心的上了一节课.
苹果熟了从树上落下来,古往今来是一件司空见惯的现象,然而牛顿却从司空见惯的现象中发现一个问题:苹果为什么落下来?正是这个问题的提出,才发现了万有引力定律.提出问题源于发现问题,善于发现问题,善于提出问题,是创新能力最重要的基础.因此,新课程特别重视问题在教学活动中的重要作用.一方面,通过问题来学习,把问题看成学习的动力、起点和贯穿学习过程的主线;一方面,通过学习来生成问题,把学习过程看成发现问题,提出问题、分析问题和解决问题的过程,问题是放飞思维的钥匙,因此教师要精心设计问题,让学生独立思考,打开学生思维大门.
二、在放飞思维中寻找创新
古人讲:“删繁就简三秋树,标新立异二月花”.课堂教学要鼓励学生做标新立异的二月花,鼓励学生有所发现,有所创造,更要鼓励学生再次发现,重新组合,学生在自我构建的过程中,有常规的思考,也会有超常的想法,教师要及时引导和发现学生独特、新颖的方法,在独特、新颖中创新.
在反比例函数的题目中,不知道怎么回事,一做到这样的题目,很多学生的结果都是.不仅仅是这一题,还有如:,求等于多少等这一类型的化简题目,学生总是把直接乘以等号右边的数或式子.我尝试了很多方法让学生理解,改正错误,但效果不太明显.那天学生在做练习时又重犯错误,我不得不把这题再说一次.其实我真的不愿意再说了,所以有点不耐烦.这时,杨同学举手告诉我:老师我有一种很简单的方法让我记住,做这些题目时不会犯错.大家一听觉得很新鲜,都叫杨快点说出方法来.杨告诉我们,他借用整式加减法里的移项法则:“移项要变号”.如,表示乘的积是6.求时,把从左边移到等号的右边,就把乘变成除以就行了. “移项要变号”一般只是应用在整式加减法里,象等,.即变成,没有想到“移项要变号”被杨巧用在乘除法的计算中.我组织学生进行了讨论,看是否可行.这独特新颖的方法很快让同学接受推广.
三、学会等待,给学生思维放飞的机会与时间
思维需要时间,创新需要机会,假如我们设计的问题仅仅是“对不对”,“是不是”,是学生不需要独立思考或深入思考就能够解决的问题,那学生就没有思考的机会,就不可能创新.因此,教师设计的问题要是具有挑战性,探索性或开放性,才能有创新的空间.但创新也需要足够的时间,否则学生创新的火花就会泯灭.所以教师要学会等待,等待学生思维的火花的并发.
我有这样一次的经历:在讲授一次函数性质的内容时我采用了自学方式,把学生前一天做好的作业拿到课堂来.
简单的讲评和导入后就让学生观察第一组图象,请学生自由发挥,看谁能找出三个图象的异同,在教师的鼓动下学生越说越多:
学生1:三个图象都是一条直线.
学生2:它们相互平行,倾斜度一样.
学生3:它们都经过第一、三象限.
学生4:它们都呈上升趋势.
学生5:y=x+1的图象是由y=x向上平移一个单位长度得到,y=x-1的图象是由y=x向下平移一个单位长度得到.
……
学生举手的人数很多,意见都很多,很零碎,经过师生一起处理和整理后,得到以上关键的5条.接下来再给出第二组图象让学生进行对比,大家发现基本情况是雷同的,只是三个图象经过的象限是第二、四象限,都呈下降趋势.这时学生已把关键的问题看清.
接着我让学生结合图象的异同与函数解析式中k、b的异同进行比较,归纳.
学生1:一次函数的图象是一条直线.
学生2:函数y=x,y=x+1,y=x-1的3个图象互相平行,都经过第一、三象限,都呈上升趋势,即y随x增大而增大.
……
学生又一次讨论起来.
最后学生与教师一起归纳一次函数的性质.
当学生做笔记时我看了一下手表,啊?!这时已超过了大半节课了,函数性质还有一半内容没讲啊.没办法,学生的思想火花刚点着,我不能在这时把它熄灭了.于是就这样熙熙嚷嚷地完成了一节课,结果呢,我才刚把一次函数的性质完成,几乎没进行过什么练习.
想一想这节课,学生七嘴八舌地说了很多,这个课堂是学生的,而我只是在等待学生说出自己的看法,帮助学生归纳.
(四)向老师挑战,向书本挑战,让思维飞起来
在教学过程中,要鼓励学生不迷信老师和书本的权威.在独立思考过程中,引导学生质疑,引导学生批判地接受,而不是盲目的“复制”,只有这样,才能充分发挥学生的独特的思考方式,培养学生的创新能力.
还记得在教学等腰梯形判定时,课本只给出了关于边与角方面的判定方法.我特意反问同学们:以前的特殊四边形性质与判定我们都是从边、角、对角线三方面研究,大家有没有发现课本还没给出关于等腰梯形对角线方面的的判定,那么“等腰梯形的对角线相等”这个定理的逆命题成立吗?能作为判定定理来帮助我们解答问题吗?这一下子,教室沸腾起来,许多同学质疑起来.我就交给同学们一个任务,挑战一下这个难题,看等腰梯形有没有关于对角线方面的判定定理.很快到了晚修时间,3班同学把刚好经过他们课室的我叫停了,高兴的同学们给我说何XX已经证明“对角线相等的梯形是等腰梯形”,并把证明给我看.我仔细地看了一下,然后面带微笑地走向讲台在黑板上写了几句话:你XX同学已证明了“对角线相等的梯形是等腰梯形”,请把这个判定定理记在课本上,并祝贺XX同学成功了.讲台下马上有同学接上一句话:“我班又多了一位何老师!”我相信同学心中的喜悦已经按捺不住了.从那以后,同学们不时找出许多问题问我,质疑我的做法和课本的做法,曾有位同学发现课本的例题应有两种情况,而课本只有一种情况……“除了老师讲的、书本写的还有没有别的思考方法吗?”鼓励和引导学生不迷信老师和书本的思考方式,勇于提出自己的见解.
社会主义现代化建设需要丰富的想象力和巨大的创造力,而学校教育正是培养具有丰富想象力和巨大创造力人才的摇篮.在教学中,教师要树立新的教学理念,注重培养学生的创新思维,鼓励学生独立思考、大胆质疑,引导他们善于从多角度看问题,让学生在放飞思维中收获成功.
浏览量:3
下载量:0
时间:
学生对培育新问题的解决实质上就是创新能力的体现。今天读文网小编要与大家分享的是:培养学生创新思维的几点思考相关数学论文。具体内容如下,欢迎阅读:
培养学生创新思维的几点思考
如何培养学生在数学学科上的创新思维、塑造健康人格是当今教育和教学正在研究的重要问题。诺贝尔奖得主朱棣文一针见血指出:“中国学生的动手能力差,创新精神不足,这是与美国学生的主要差距。”应该说,这一评价是切中时弊的。那么我们的学生创新精神和创造能力是如何失去的呢?这当然从教育本身找根源。学生学习负担沉重,教师教学形式单调,磨灭了学生学习的兴趣和对数学现象的好奇心,机械模仿式的题海战术,泯灭了学生的创造性思维。可见,解决问题的关键是教育内容的更新、教育观念的更新和教学方法的改革。在教学内容没有根本改观的情况下,教学方法的改革就显得尤为重要。笔者结合几年来的教学实践和近几年来试题、中考题谈谈自己在数学教学中对培养学生创新思维的几点粗浅认识。
1 创设情境、设疑启迪,培养学生创新思维的浓厚兴趣
亚里士多德曾经说过:“思维从问题、惊讶开始。”“疑”在心理学中称为“怀疑感”,它是对现有理论的探求,并加以评价的体验,不断探索未知领域的怀疑是未来人才不可缺少的可贵心理品质,而引疑的关键是教师善于设疑。宋代朱熹也说过:“读书无疑者,须教有疑”。因此成功地创设情境,教师不断给学生思维的契机,处处设疑、激疑、释疑,不断促使学生强烈的需要和动机,从而改变被动状态,主动学习,独立思考。
如“幂的计算”一节,在教学中,我设计了这样一个有趣的问题:将一张0.1mm厚的白纸对折30次后,请估计一下它的高度,学生七嘴八舌地议论开了,有的说6cm,有的说7cm……,于是,我说,我们学习了“幂的计算”,再计算一下它的高度,你定会瞠目结舌。怀着浓厚的兴趣,在一种无形力量的驱使下,个个认真听课,而且很快掌握,验算结果,大吃一惊。问题太诱人了,数学真奇妙,学生由衷地感叹道。
2 发展学生空间想象能力,促进创新思维
爱因斯坦说过:想象力比知识更重要,因为知识是有限的,而想象力概括着世界上的一切,推动着进步,并且是知识净化的源泉。严格的说,想象力是科学研究中的实在因素.
如在“中心对称和轴对称图形”一节中可以设计一道这样的思考题:世界上因为有了圆的图案,万物才显得富有生机,
这类问题往往没有明确的探索方向,需要学生对具体问题仔细分析来寻得,学生中有种种不同的回答,种种不同的创新。能引导学生把知识串联思考,充分展示他们的空间想象力,这样有助于学生克服思维定势所造成的消极影响;培养学生思维的灵活性和创造性。
3 加强学生的探索能力,激发创新思维
在教学中设计一些探索性问题,有利于培养学生思维的广阔性,灵活性,有利于培养学生的创新能力和创新意识。因为这一类问题是在给定条件下探索不明确的结论或由给出结论探求满足该结论所需要的条件;并且在同一条件下往往可以得出许多不同的结论,得出同一结论的条件也往往不只一种;证明一个结论的方法也往往不只一种。
例2 已知直线y=-x+4与x轴、y轴分别交与点A、B两点, P点的坐标为(-2,2),求△PAB的面积?
对与这个问题不同的同学会用不同的方法,在解完求△PAB的面积后让同学进行了反思归纳:已知三角形三个顶点的坐标,求三角形的面积有几种方法、如何解?
方法一:直接计算法。计算三角形的某一条边长,并求出该边上的高。
方法二:分割法。选择一条或几条直线,将原三角形分成若干个方便与计算面积的三角形。
方法三:补形法。将原三角形的面积转化为若干个特殊的四边形或三角形的面积之和或差。
这些方法、结论虽然存在着差异,但都从一个侧面揭示了问题的本质,教学活动中,教师在鼓励学生进行积极的探索,同时应该充分肯定学生的每个方法和结论,以便更好地调动学生探索数学问题的积极性,更好地发挥学生的主动性,从而激发学生的创造性思维。
4、 培育新问题,提高创造性思维
把经过调整组合而成的新的结构,新的题型称为新问题,如开放题,实际问题的数学建模等。学生对培育新问题的解决实质上就是创新能力的体现。作为教师精心创设新颖有趣、引人入胜的问题,诱发学生学习动机,启迪思维,激发求知欲望,使学生能自觉调整或改变原有的认识结构,接受新知识,解决新问题,不断提高创新思维的质量。而且开放题具有足够的灵活性,让学生在观察、猜测,动手等一系列活动中探索,最大限度地给学生创造思维自由驰骋的时间和空间,使学生的思维得到延伸,发散,拓宽。
心理学家皮亚杰指出:“教育的首要目标在于培养有能力创新的人,而不是重复前人所做的事”。因此笔者认为摆在每一个数学教师面前最重要的课题是如何从以“例题教学”为核心的传统数学教育,转变为培养学生创新能力的数学教育。
浏览量:2
下载量:0
时间:
思维是人脑对客观现实的概括和间接反映,是人脑的基本活动形式,是人的一种高级的心理活动形式。数学思维就是数学地思考问题和解决问题的思维活动形式。以下是读文网小编今天为大家精心准备的:对小学生数学思维与兴趣的培养的研究相关论文。内容仅供参考,欢迎阅读!
在小学阶段的数学教学工作中,教师要把培养学生的数学学习兴趣作为教学重点,只有学生产生了兴趣,学生才乐于去思考和探索,去发现数学中的奥秘,发挥主观能动性,开拓数学思维。要想让学生对数学学习产生持久的兴趣,教师就要保护好学生对于数学知识的探索好奇心。教师在数学教学的过程中,要注意培养学生的逻辑思维能力,学生的思维应该是灵活的,有创造性的。兴趣是最好的老师,只有把兴趣的培养和思维能力的提高有效结合,才能取得事半功倍的效果。
传统教学过于注重教师在教学过程中的地位,而忽略了学生才是学习的真正主体,而随着新课程改革的步步推进,教师的教学观念也得到了更新,激发学生的数学学习兴趣,培养他们的自主学习能力成为小学数学教师主要的教学任务。所以,我们要有计划地在教学过程中注意培养学生的新思路,这是我们小学数学必须关心每一位学生的首要问题。
教师应充分理解数学教材材料,用已知的许多因素积极教导学生去分析和理解数学中的概念、解题步骤等。在小学数学教学中培养学生的兴趣点是很重要的,教师要积极地抓住学生的心理特点,培养学生的思维能力。兴趣是教学中最好的营养和催化剂,学生有了兴趣,就会认真分析学习材料,分析数学问题的思维就会更加清晰。
在学习中,如果学生体现出的主观能动性被调动起来,学习效果就会得到明显提高。在教学过程中,教师要注意自己的教学方法,发挥自己在教学活动中的主导作用,培养学生的数学学习兴趣和数学思维。
培养小学生对新事物的观察能力,增长新知识是小学数学的教学目标之一。小学数学教师要教给学生对事物进行观察的基本方法,使学生了解观察的意义是通过对事物表面发生的现象的观察去了解它的本质,发现客观规律,进一步学习新知识,学习新技能,开发新的学习目标。通过认真观察和细致分析,在学习的实践过程中得到对于新知识的理解。没有观察就没有联想,就不可能有一个准确的结论。为了让小学生学会总结和创新,我们小学数学教师应该自觉地培养学生的思维,逐渐提高学生的综合能力。
在小学数学教育教学中,教师只努力提高学生的语言表达能力是远远不够的。因为很多的数学知识都是比较抽象的,针对小学生的心理特点,让他们理解这些抽象的数学知识是很困难的,这就需要我们数学教师发挥自己的主导作用,把抽象的知识形象化,运用合适的教学用具来辅助教学,使这些抽象的知识更直观,更容易理解,深入浅出,积极引导学生去发现新事物,探索新思路,帮助学生真正理解这些知识,使他们的思维活跃,印象深刻,让他们通过自己的努力学习感受到数学学科的魅力,享受到数学学习的无尽乐趣。
一位著名的教育学家曾经说过这样的一句话:孩子的智慧体现在他们的手指上。很多数学知识的获得都可以通过学生的动手操作来进行,实际的动手操作,容易激发学生的参与热情,使学生能够在轻松自在的动手活动中学到抽象的数学知识。如在学习长度单位厘米和米等概念时,学生都知道1米等于100厘米,可是在他们的脑海里并没有一个具体的印象:1米到底是多长?这个时候,我们不要再枯燥地一遍又一遍地讲解,可以为全班同学量身高,让学生以小组为单位互相量身高,体会米和厘米的区别和联系。
又如在学习计算三角形的面积时,我们可以把长方形剪成相等的三角形,通过形象直观的感受,让学生由计算长方形的面积来推断出三角形的面积的计算方法。总之,学生在边动手边学习的过程中,通过独立的思考和探索,创造性思维得到了提高。在小学阶段,教师的正确引导对于培养学生的数学思维起着很重要的作用,可以使小学生积极去思考问题、分析问题和解决问题,从而培养学生形成良好的学习习惯。
(一)教师积极运用启发法教学,培养学生的求异发散思维
优秀的小学数学教师会根据学生的个体差异采用灵活多样的教学方法,对于数学题的讲解,采用什么样的语言使学生了解和尽快接受是关键。如果学生不理解题意,教师应立即采用针对性的教学方法,让学生理解和接受。慢慢地,学生就会有新的发现。教师可以用一个简单的手势或图形直观讲解,逐步加入,这样可以提高学生的学习兴趣,开拓小学生新的解题思路。教师通过新的教学方法的运用,使学生掌握了教学的重点和难点,同时发散学生的思维,使学生了解了学习方法的重要性。
(二)利用一题多解的方法来拓展学生的发展思维
一题多解的方式有助于培养学生的发散性思维,并且会激发学生的探索热情,从而让小学生对于数学学习产生极大的兴趣。学生可以通过独立思考或者小组合作的方式来发现同一问题的不同解决办法,从而拓展自己的发散性思维,在这个过程中,学生通过自己的新思路会品尝到成功的喜悦感,产生浓厚的兴趣。所以,数学教师在小学阶段不应该单纯培养兴趣,更要重视开发新的思维能力,应着重于把学生的学习兴趣和思维发展相结合。总之,在小学数学教学过程中,教师要重视培养学生的学习兴趣,通过不断更新自己的教育理念、运用灵活多样的教学方法来引导学生从各种不同的角度思考问题,获得数学知识,使学生能够在培养持久的学习兴趣的同时开拓自己的思维。
【对小学生数学思维与兴趣的培养进行研究论文】相关
浏览量:2
下载量:0
时间: