为您找到与替换linux内核相关的共200个结果:
menuconfig
menuconfig是常用的配制工具,不用特意安装,好像是和GCC一起装上的。
注:menuconfig要用到ncurses的库,所以要安装它。下面的命令可以安装。
apt-get install libncurses*
选择相应的配置时,有三种选择,它们分别代表的含义如下:
“Y”- 将该功能编译进内核
“N”- 不将该功能编译进内核
“M”- 将该功能编译成可以在需要时动态插入到内核中的模块。
将与核心其它部分关系较远且不经常使用的部分功能代码编译成为可加载模块,有利于减小内核的长度,减小内核消耗的内存,简化该功能相应的环境改变时对内核的影响。许多功能都可以这样处理,例如像上面提到的网卡的支持、对FAT等文件系统的支持。
make menuconfig,则需要使用空格键进行选取。你会发现在每一个选项前都有个括号, 但有的是中括号有的是尖括号,还有一种圆括号。 用空格键选择时可以发现,中括号里要么是空,要么是"*",而尖括号里可以是空,"*"和"M"这表示前者对应的项要么不要,要么编译到内核里;后者则多一样选择,可以编译成模块。而圆括号的内容是要你在所提供的几个选项中选择一项。
中括号:要么是空,要么是"*",代表要么不要,要么编译到内核里。
尖括号:可以是空,"*"和"M",多一样选择,可以编译成模块。
圆括号:所提供的几个选项中选择一项。
menuconfig相关命令:
$sudo make menuconfig
配置用到的键只有几个,esc退出菜单;空格改变选项状态;光标键上下左右移动,回车选定。
选项意义:M是编译成可以随时加入的模块,*是编译进入内核,空就是不要。
浏览量:2
下载量:0
时间:
内核简介
内核,是一个操作系统的核心。它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。
Linux的一个重要的特点就是其源代码的公开性,所有的内核源程序都可以在/usr/src/linux下找到,大部分应用软件也都是遵循GPL而设计的,你都可以获取相应的源程序代码。
全世界任何一个软件工程师都可以将自己认为优秀的代码加入到其中,由此引发的一个明显的好处就是Linux修补漏洞的快速以及对最新软件技术的利用。
而Linux的内核则是这些特点的最直接的代表。 想象一下,拥有了内核的源程序对你来说意味着什么?
首先,我们可以了解系统是如何工作的。通过通读源代码,我们就可以了解系统的工作原理,这在Windows下简直是天方夜谭。
其次,我们可以针对自己的情况,量体裁衣,定制适合自己的系统,这样就需要重新编译内核。在Windows下是什么情况呢?相信很多人都被越来越庞大的Windows整得莫名其妙过。
再次,我们可以对内核进行修改,以符合自己的需要。这意味着什么?没错,相当于自己开发了一个操作系统,但是大部分的工作已经做好了,你所要做的就是要增加并实现自己需要的功能。在Windows下,除非你是微软的核心技术人员,否则就不用痴心妄想了。
内核版本号
由于Linux的源程序是完全公开的,任何人只要遵循GPL,就可以对内核加以修改并发布给他人使用。
Linux的开发采用的是集市模型(bazaar,与cathedral--教堂模型--对应),为了确保这些无序的开发过程能够有序地进行,Linux采用了双树系统。
一个树是稳定树(stable tree),另一个树是非稳定树(unstable tree)或者开发树(development tree)。
一些新特性、实验性改进等都将首先在开发树中进行。如果在开发树中所做的改进也可以应用于稳定树,那么在开发树中经过测试以后,在稳定树中将进行相同的改进。
一旦开发树经过了足够的发展,开发树就会成为新的稳定树。开发数就体现在源程序的版本号中;
源程序版本号的形式为x.y.z:对于稳定树来说,y是偶数;对于开发树来说,y比相应的稳定树大一(因此,是奇数)。
浏览量:2
下载量:0
时间:
内核配制详细说明
1. Code maturity level options
代码成熟等级。此处只有一项:prompt for development and/or incomplete code/drivers,如果你要试验现在仍处于实验阶段的功能,比如khttpd、IPv6等,就必须把该项选择为Y了;否则可以把它选择为N。
2. Loadable module support
对模块的支持。这里面有三项:
Enable loadable module support:除非你准备把所有需要的内容都编译到内核里面,否则该项应该是必选的。
Set version inFORMation on all module symbols:可以不选它。
Kernel module loader:让内核在启动时有自己装入必需模块的能力,建议选上。
3. Processor type and features
CPU类型。内容蛮多的,不一一介绍了,有关的几个如下:
Processor family:根据你自己的情况选择CPU类型。
High Memory Support:大容量内存的支持。可以支持到4G、64G,一般可以不选。
Math emulation:协处理器仿真。协处理器是在386时代的宠儿,现在早已不用了。
MTTR support:MTTR支持。可不选。
Symmetric multi-processing support:对称多处理支持。除非你富到有多个CPU,否则就不用选了。
4. General setup
这里是对最普通的一些属性进行设置。这部分内容非常多,一般使用缺省设置就可以了。下面介绍一下经常使用的一些选项:
Networking support:网络支持。必须,没有网卡也建议你选上。
PCI support:PCI支持。如果使用了PCI的卡,当然必选。
PCI access mode:PCI存取模式。可供选择的有BIOS、Direct和Any,选Any吧。
Support for hot-pluggabel devices:热插拔设备支持。支持的不是太好,可不选。
PCMCIA/CardBus support:PCMCIA/CardBus支持。有PCMCIA就必选了。
System V IPC
BSD Process Accounting
Sysctl support:以上三项是有关进程处理/IPC调用的,主要就是System V和BSD两种风格。如果你不是使用BSD,就按照缺省吧。
Power Management support:电源管理支持。
Advanced Power Management BIOS support:高级电源管理BIOS支持。
5. Memory Technology Device(MTD)
MTD设备支持。可不选。
6. Parallel port support
并口支持。如果不打算使用串口,就别选了。
7. Plug and Play configuration
即插即用支持。虽然Linux对即插即用目前支持的不如Windows好,但是还是选上吧,这样你可以拔下鼠标之类的体验一下Linux下即插即用的感觉。
8. Block devices
块设备支持。这个就得针对自己的情况来选了,简单说明一下吧:
Normal PC floppy disk support:普通PC软盘支持。这个应该必选。
XT hard disk support:
Compaq SMART2 support:
Mulex DAC960/DAC1100 PCI RAID Controller support:RAID镜像用的。
Loopback device support:
Network block device support:网络块设备支持。如果想访问网上邻居的东西,就选上。
Logical volume manager(LVM)support:逻辑卷管理支持。
Multiple devices driver support:多设备驱动支持。
RAM disk support:RAM盘支持。
9. Networking options
网络选项。这里配置的是网络协议。内容太多了,不一一介绍了,自己看吧,如果你对网络协议有所了解的话,应该可以看懂的。如果懒得看,使用缺省选项(肯定要选中TCP/IP networking哦)就可以了。让我们看看,TCP/IP、ATM、IPX、DECnet、Appletalk……支持的协议好多哦,IPv6也支持了,Qos and/or fair queueing(服务质量公平调度)也支持了,还有kHTTPd,不过这些都还在实验阶段。
10. Telephony Support
电话支持。Linux下可以支持电话卡,这样你就可以在IP上使用普通的电话提供语音服务了。记住,电话卡可和modem没有任何关系哦。
11. ATA/IDE/MFM/RLL support
这个是有关各种接口的硬盘/光驱/磁带/软盘支持的,内容太多了,使用缺省的选项吧,如果你使用了比较特殊的设备,比如PCMCIA等,就到里面自己找相应的选项吧。
12. SCSI support
SCSI设备的支持。我没有SCSI的设备,所以根本就不用选,如果你用了SCSI的硬盘/光驱/磁带等设备,自己找好了。
13. Fusion MPT device support
需要Fusion MPT兼容PCI适配器,不用选。
14. I2O device support
需要I2O接口适配器支持,在智能Input/Output(I2O)体系接口中使用。
15. Network device support
网络设备支持。上面选好协议了,现在该选设备了,可想而知,内容肯定多得很。还好还好,里面大概分类了,有ARCnet设备、Ethernet(10 or 100 Mbit)、Ethernet(1000Mbit)、Wireless LAN(non-hamradio)、Token Ring device、Wan interfaces、PCMCIA network device support几大类。我用的是10/100M的以太网,看来只需要选则这个了。还是10/100M的以太网设备熟悉,内容虽然多,一眼就可以看到我所用的RealTeck RTL-8139 PCI Fast Ethernet Adapter support,为了免得麻烦,编译到内核里面好了,不选M了,选Y。耐心点,一般说来你都能找到自己用的网卡。如果没有,你只好自己到厂商那里去要驱动了。
16. Amateur Radio support
配置业余无线广播。
17. IrDA(infrared)support
红外线支持。
18. ISDN subsystem
如果你使用ISDN上网,这个就必不可少了。
19. Old CD-ROM drivers(not SCSI、not IDE)
做的可真周到,原来那些非SCSI/IDE口的光驱谁还在用啊,自己选吧,用IDE的CD-ROM不用选。
20. Character devices
字符设备。这个内容又太多了,先使用缺省设置,需要的话自己就修改。把大类介绍一下吧:
I2C support:I2C是Philips极力推动的微控制应用中使用的低速串行总线协议。如果你要选择下面的Video For Linux,该项必选。
Mice:鼠标。现在可以支持总线、串口、PS/2、C&T 82C710 mouse port、PC110 digitizer pad,自己根据需要选择。
Joysticks:手柄。即使在Linux下把手柄驱动起来意义也不是太大,游戏太少了。
Watchdog Cards:虽然称为Cards,这个可以用纯软件来实现,当然也有硬件的。如果你把这个选中,那么就会在你的/dev下创建一个名为watchdog的文件,它可以记录你的系统的运行情况,一直到系统重新启动的1分钟左右。有了这个文件,你就可以恢复系统到重启前的状态了。
Video For Linux:支持有关的音频/视频卡。
Ftape, the floppy tape device driver:
PCMCIA character device support:
21. File systems
文件系统。内容又太多了,老法子,在缺省选项的基础上进行修改。介绍以下几项:
Quota support:Quota可以限制每个用户可以使用的硬盘空间的上限,在多用户共同使用一台主机的情况中十分有效。
DOS FAT fs support:DOS FAT文件格式的支持,可以支持FAT16、FAT32。
ISO 9660 CD-ROM file system support:光盘使用的就是ISO 9660的文件格式。
NTFS file system support:ntfs是NT使用的文件格式。
/proc file system support:/proc文件系统是Linux提供给用户和系统进行交互的通道,建议选上,否则有些功能没法正确执行。
还有另外三个大类都规到这儿了:Network File Systems(网络文件系统)、Partition Types(分区类型)、Native Language Support(本地语言支持)。值得一提的是Network File Systems里面的两种:NFS和SMB分别是Linux和Windows相互以网络邻居的形式访问对方所使用的文件系统,根据需要加以选择。
22. Console drivers
控制台驱动。一般使用VGA text console就可以了,标准的80*25的文本控制台。
23. Sound
声卡驱动。如果你能在列表中找到声卡驱动那自然最好,否则就试试OSS了。
24. USB supprot
USB支持。很多USB设备,比如鼠标、调制解调器、打印机、扫描仪等,在Linux都可以得到支持,根据需要自行选择。
25. Kernel hacking
配置了这个,即使在系统崩溃时,你也可以进行一定的工作了。普通用户是用不着这个功能的。
浏览量:2
下载量:0
时间:
linux2.4内核kernel对 Initrd 的处理流程
为了使读者清晰的了解Linux2.6内核initrd机制的变化,在重点介绍Linux2.6内核initrd之前,先对linux2.4内核的 initrd进行一个简单的介绍。
Linux2.4内核的initrd的格式是文件系统镜像文件, linux2.4内核对initrd的处理流程如下:
1. boot loader把内核以及/dev/initrd的内容加载到内存,/dev/initrd是由boot loader初始化的设备,存储着initrd。
2. 在内核初始化过程中,内核把 /dev/initrd 设备的内容解压缩并拷贝到 /dev/ram0 设备上。
3. 内核以可读写的方式把 /dev/ram0 设备挂载为原始的根文件系统。
4. 如果 /dev/ram0 被指定为真正的根文件系统,那么内核跳至最后一步正常启动。
5. 执行 initrd 上的 /linuxrc 文件,linuxrc 通常是一个脚本文件,负责加载内核访问根文件系统必须的驱动, 以及加载根文件系统。
6. /linuxrc 执行完毕,真正的根文件系统被挂载。
7. 如果真正的根文件系统存在 /initrd 目录,那么 /dev/ram0 将从 / 移动到 /initrd。否则如果 /initrd 目录不存在, /dev/ram0 将被卸载。
8. 在真正的根文件系统上进行正常启动过程 ,执行 /sbin/init。
linux2.4 内核的 initrd 的执行是作为内核启动的一个中间阶段,也就是说 initrd 的 /linuxrc 执行以后,内核会继续执行初始化代码,我们后面会看到这是 linux2.4 内核同 2.6 内核的 initrd 处理流程的一个显著区别。
linux2.6 内核kernel对 Initrd 的处理流程
linux2.6 内核支持两种格式的 initrd,一种是前面 linux2.4 内核那种传统格式的文件系统镜像-image-initrd,它的制作方法同 Linux2.4 内核的 initrd 一样,其核心文件就是 /linuxrc。
另外一种格式的 initrd 是 cpio 格式的,这种格式的 initrd 从 linux2.5 起开始引入,使用 cpio 工具生成,其核心文件不再是 /linuxrc,而是 /init。
尽管 linux2.6 内核对 cpio-initrd和 image-initrd 这两种格式的 initrd 均支持,但对其处理流程有着显著的区别,下面分别介绍 linux2.6 内核对这两种 initrd 的处理流程。
cpio-initrd 的处理流程
1. boot loader 把内核以及 initrd 文件加载到内存的特定位置。
2. 内核判断initrd的文件格式,如果是cpio格式。
3. 将initrd的内容释放到rootfs中。
4. 执行initrd中的/init文件,执行到这一点,内核的工作全部结束,完全交给/init文件处理。
image-initrd的处理流程
1. boot loader把内核以及initrd文件加载到内存的特定位置。
2. 内核判断initrd的文件格式,如果不是cpio格式,将其作为image-initrd处理。
3. 内核将initrd的内容保存在rootfs下的/initrd.image文件中。
4. 内核将/initrd.image的内容读入/dev/ram0设备中,也就是读入了一个内存盘中。
5. 接着内核以可读写的方式把/dev/ram0设备挂载为原始的根文件系统。
6. .如果/dev/ram0被指定为真正的根文件系统,那么内核跳至最后一步正常启动。
7. 执行initrd上的/linuxrc文件,linuxrc通常是一个脚本文件,负责加载内核访问根文件系统必须的驱动, 以及加载根文件系统。
8. /linuxrc执行完毕,常规根文件系统被挂载
9. 如果常规根文件系统存在/initrd目录,那么/dev/ram0将从/移动到/initrd。否则如果/initrd目录不存在, /dev/ram0将被卸载。
10. 在常规根文件系统上进行正常启动过程 ,执行/sbin/init。
通过上面的流程介绍可知,Linux2.6内核对image-initrd的处理流程同linux2.4内核相比并没有显著的变化, cpio-initrd的处理流程相比于image-initrd的处理流程却有很大的区别,流程非常简单。
cpio-initrd同image-initrd的区别与优势
cpio-initrd的制作方法更加简单 ,而传统initrd的制作过程比较繁琐,后面有详细介绍。
cpio-initrd的内核处理流程更加简化
通过上面initrd处理流程的介绍,cpio-initrd的处理流程显得格外简单,通过对比可知cpio-initrd的处理流程在如下两个方面得到了简化:
1. cpio-initrd并没有使用额外的ramdisk,而是将其内容输入到rootfs中,其实rootfs本身也是一个基于内存的文件系统。这样就省掉了ramdisk的挂载、卸载等步骤。
2. cpio-initrd启动完/init进程,内核的任务就结束了,剩下的工作完全交给/init处理;而对于image-initrd,内核在执行完 /linuxrc进程后,还要进行一些收尾工作,并且要负责执行真正的根文件系统的/sbin/init。
cpio-initrd的职责更加重要
cpio-initrd不再象image-initrd那样作为linux内核启动的一个中间步骤,而是作为内核启动的终点,内核将控 制权交给cpio-initrd的/init文件后,内核的任务就结束了,所以在/init文件中,我们可以做更多的工作,而不比担心同内核后续处理的衔 接问题。当然目前linux发行版的cpio-initrd的/init文件的内容还没有本质的改变,但是相信initrd职责的增加一定是一个趋势。
浏览量:2
下载量:0
时间:
编译加载linux驱动和内核模块
到目前为止,我们在构建initramfs时还没有涉及内核模块的支持,所用到的硬件驱动程序都是直接编译到内核中。现在我们就看看如何使initramfs支持内核模块。
编译内核模块
首 先,内核配置要支持模块,并支持内核模块的自动加载功能:在内核配置菜单中的激活下面的配置项,编译进内核
Load module support / Enable loadable module support / Automatic kernel loading ;
然后把需要的硬件驱动程序配置模块形式,比如把我的机器上的硬盘控制器的驱动编译成模块,则选择
Device Driver
|---->SCSI device support
|---->SCSI disk support
|----->verbose SCSI error reporting (不是必须的,但可方便问题定位)
|----->SCSI low-level drivers
|---->Serial ATA (SATA) support
|---->intel PIIX/ICH SATA support
把它们配置成模块。
最后,编译内核,并把编译好的内核模块安装到image的目录下:
make
make INSTALL_MOD_PATH=~/initramfs-test/image modules_install
命 令执行完毕后,在image/lib/modules/2.6.17.13/kernel/drivers/scsi目录下安装了4个内核模文 件:scsi_mod.ko、sd_mod.ko、ata_piix.ko、libata.ko,它们就是所需的硬盘控制器的驱动程序。
加载内核模块
busybox的modprobe命令执行不正常,不能加载内核 模块。怀疑是busybox的modprobe命令配置或编译有问题。否则可以自动加载驱动。先用insmod命令依次加载。查看/lib/modules /2.6.17.13/modules.dep,弄清楚了4个模块的依赖关系,执行下面的命令加载:
insmod scsi_mod
insmod libata
insmod ata_piix
insmod sd_mod
然后再用
mdev -s
命令生成硬盘的设备文件。 好了,可以安装硬盘分区,了并把根文件系统切换到硬盘分区:
mount /dev/sda8 /mnt
exec switch_root /mnt /sbin/init
系统正常启动到了CLFS,我们可以做到用initramfs中的硬盘控制器的驱动模块安装硬盘分区了。
最终init文件
分区要换成自己的分区。
#!/bin/sh
mount -t proc proc /proc
mount -t sysfs sysfs /sys
insmod scsi_mod
insmod libata
insmod ata_piix
insmod sd_mod
mdev -s
mount /dev/sda8 /mnt
exec switch_root /mnt /sbin/init
浏览量:2
下载量:0
时间:
在虚拟机启动时按Esc,强制进入Grub启动菜单。
在菜单中选择’Test,Linux 3.7.4,使用刚编译的内核初始化系统,查看启动过程,看是否存在异常,如一切正常,则表明内核编译正确,反之则需要继续修改编译选项。
浏览量:3
下载量:0
时间:
现如今,电脑的使用越来越普遍,几乎每家每户都有电脑,而电脑的操作离不开操作系统,在这里,读文网小编就向大家介绍Linux内核。
很多Linux 爱好者对内核很感兴趣却无从下手,本文旨在介绍一种解读Linux内核源码的入门方法,而不是讲解Linux复杂的内核机制。
1.核心源程序的文件组织
(1)Linux核心源程序通常都安装在/usr/src/Linux下,而且它有一个非常简单的编号约定:任何偶数的核心(中间数字)如:2.0.30都是一个稳定的发行的核心,而任何奇数的核心如:2.1.42都是一个开发中的核心。
本文基于稳定的2.2.5源代码,第二部分的实现平台为Redhat Linux 6.0。
(2)核心源程序的文件按树形结构进行组织,在源程序树的最上层你会看到这样一些目录:
arch:arch子目录包括了所有和体系结构相关的核心代码。它的每一个子目录都代表一种支持的体系结构,例如i386就是关于Intel CPU及与之相兼容体系结构的子目录。PC机一般都基于此目录;
include:include子目录包括编译核心所需要的大部分头文件。与平台无关的头文件在include/linux子目录下,与Intel CPU相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关SCSI设备的头文件目录;
init:这个目录包含核心的初始化代码(注:不是系统的引导代码),包含两个文件main.c和Version.c,这是研究核心如何工作的一个非常好的起点;
Mm:这个目录包括所有独立于CPU 体系结构的内存管理代码,如页式存储管理内存的分配和释放等,而和体系结构相关的内存管理代码则位于arch/*/mm/,例如arch/i386/mm/Fault.c;
Kernel:主要的核心代码,此目录下的文件实现了大多数Linux系统的内核函数,其中最重要的文件当属sched.c,同样,和体系结构相关的代码在arch/*/kernel中;
Drivers:放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目录,如/block下为块设备驱动程序,比如ide(ide.c)。如果你希望查看所有可能包含文件系统的设备是如何初始化的,你可以看drivers/block/genhd.c中的device_setup()函数。它不仅初始化硬盘,也初始化网络,因为安装nfs文件系统的时候需要使用网络。
其他目录如Lib:放置核心的库代码;Net:核心与网络相关的代码;Ipc:包含核心的进程间通信的代码;Fs:所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持一个文件系统,例如fat和ext2、Scripts,此目录包含用于配置核心的脚本文件等。
一般在每个目录下都有一个.depend 文件和一个Makefile 文件,这两个文件都是编译时使用的辅助文件,仔细阅读这两个文件对弄清各个文件之间的联系和依托关系很有帮助,而且在有的目录下还有Readme 文件,它是对该目录下的文件的一些说明,同样有利于我们对内核源码的理解。
2.解读实战:为你的内核增加一个系统调用
虽然Linux 的内核源码用树形结构组织得非常合理、科学,把与功能相关联的文件都放在同一个子目录下,这样使得程序更具可读性。然而,Linux 的内核源码实在是太大而且非常复杂,即便采用了很合理的文件组织方法,在不同目录下的文件之间还是有很多的关联,分析核心的一部分代码通常要查看其他的几个相关的文件,而且可能这些文件还不在同一个子目录下。
下面举一个具体的内核分析实例,希望能通过这个实例,使读者对Linux 的内核组织有些具体的认识,读者从中也可以学到一些对内核的分析方法。
以下即为分析实例:
(1)操作平台
硬件:CPU Intel Pentium II;
软件:Redhat Linux 6.0,内核版本2.2.5
(2)相关内核源代码分析
①系统的引导和初始化:Linux 系统的引导有好几种方式,常见的有Lilo、Loadin引导和Linux的自举引导(bootsect-loader),而后者所对应源程序为arch/i386/boot/bootsect.S,它为实模式的汇编程序,限于篇幅在此不做分析。无论是哪种引导方式,最后都要跳转到arch/i386/Kernel/setup.S。setup.S主要是进行实模式下的初始化,为系统进入保护模式做准备。此后,系统执行arch/i386/kernel/head.S (对经压缩后存放的内核要先执行arch/i386/boot/compressed/head.S);head.S 中定义的一段汇编程序setup_idt,它负责建立一张256项的idt表(Interrupt Descriptor Table),此表保存着所有自陷和中断的入口地址,其中包括系统调用总控程序system_call 的入口地址。当然,除此之外,head.S还要做一些其他的初始化工作。
②系统初始化后运行的第一个内核程序asmlinkage void __init start_kernel(void) 定义在/usr/src/linux/init/main.c中,它通过调用usr/src/linux/arch/i386/kernel/traps.c 中的一个函数void __init trap_init(void) 把各个自陷和中断服务程序的入口地址设置到idt表中,其中系统调用总控程序system_cal就是中断服务程序之一;void __init trap_init(void)函数则通过调用一个宏set_system_gate(SYSCALL_VECTOR,&system_call),把系统调用总控程序的入口挂在中断0x80上。
其中SYSCALL_VECTR是定义在/usr/src/linux/arch/i386/kernel/irq.h中的一个常量0x80,而system_call 即为中断总控程序的入口地址,中断总控程序用汇编语言定义在/usr/src/linux/arch/i386/kernel/entry.S中。
③中断总控程序主要负责保存处理机执行系统调用前的状态,检验当前调用是否合法,并根据系统调用向量,使处理机跳转到保存在sys_call_table 表中的相应系统服务例程的入口,从系统服务例程返回后恢复处理机状态退回用户程序。
而系统调用向量则定义在/usr/src/linux/include/asm-386/unistd.h 中,sys_call_table 表定义在/usr/src/linux/arch/i386/kernel/entry.S 中,同时在/usr/src/linux/include/asm-386/unistd.h 中也定义了系统调用的用户编程接口。
④由此可见,Linux的系统调用也像DOS系统的int 21h中断服务,大把0x80中断作为总的入口,然后转到保存在sys_call_table表中的各种中断服务例程的入口地址,提供各种不同的中断服务。
提供上源代码分析可知,要增加一个系统调用就必须在sys_call_table表中增加一项,并在其中保存好自己的系统服务例程的入口地址,然后重新编译内核,当然,系统服务例程是必不可少的。
由此可知,在此版Linux内核源程序<2.2.5>中,与系统调用相关的源程序文件就包括以下这些:
* arch/i386/boot/bootsect.S
* rch/i386/Kernel/setup.S
* rch/i386/boot/compressed/head.S
* rch/i386/kernel/head.S
* nit/main.c
* rch/i386/kernel/traps.c
* rch/i386/kernel/entry.S
* rch/i386/kernel/irq.h
* nclude/asm-386/unistd.h
当然,这只是涉及到的几个主要文件。而事实上,增加系统调用真正要修改的文件只有include/asm-386/unistd.h 和arch/i386/kernel/entry.S两个。
(3)源码的修改
①kernel/sys.c中增加系统服务例程如下:
asmlinkage int sys_addtotal(int numdata)
{ int i=0,enddata=0;
while(i<=numdata)
enddata+=i++;
return enddata; }
该函数有一个int 型入口参数numdata , 并返回从0 到numdata 的累加值,然而也可以把系统服务例程放在一个自己定义的文件或其他文件中,只是要在相应文件中作必要的说明。
②把smlinkage int sys_addtotal( int) 的入口地址加到sys_call_table表中。
arch/i386/kernel/entry.S 中的最后几行源代码修改前为:
.long SYMBOL_NAME(sys_sendfile)
.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */
.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */
.long SYMBOL_NAME(sys_vfork) /* 190 */
.rept NR_syscalls-190
.long SYMBOL_NAME(sys_ni_syscall)
.endr
修改后为:
.long SYMBOL_NAME(sys_sendfile)
.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */
.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */
.long SYMBOL_NAME(sys_vfork) /* 190 */
/* add by I */
.long SYMBOL_NAME(sys_addtotal)
.rept NR_syscalls-191
.long SYMBOL_NAME(sys_ni_syscall)
.endr
③把增加的sys_call_table 表项所对应的向量,在include/asm-386/unistd.h 中进行必要申明,以供用户进程和其他系统进程查询或调用。
增加后的部分/usr/src/linux/include/asm-386/unistd.h 文件如下:
#define __NR_sendfile 187
#define __NR_getpmsg 188
#define __NR_putpmsg 189
#define __NR_vfork 190
/* add by I */
#define __NR_addtotal 191
④测试程序(test.c)如下:
#include
#include
_syscall1(int,addtotal,int, num)
main()
{int i,j;
do
printf("Please input a numbern");
while(scanf("%d",&i)==EOF);
if((j=addtotal(i))==-1)
printf("Error occurred in syscall-addtotal(),n");
printf("Total from 0 to %d is %d n",i,j); }
对修改后的新的内核进行编译,并引导它作为新的操作系统,运行几个程序后可以发现一切正常;在新的系统下对测试程序进行编译(注:由于原内核并未提供此系统调用,所以只有在编译后的新内核下,此测试程序才可能被编译通过),运行情况如下:
$gcc .test test.c
$./test
Please input a number
36
Total from 0 to 36 is 666
修改成功后对相关源码进一步分析可知,在此版本的内核中,从/usr/src/linux/arch/i386/kernel/entry.S 文件中对sys_call_table 表的设置可以看出,有好几个系统调用的服务例程都是定义在/usr/src/linux/kernel/sys.c 中的同一个函数:
asmlinkage int sys_ni_syscall(void)
{return -ENOSYS; }
例如第188项和第189项就是如此:
.long SYMBOL_NAME(sys_sendfile)
.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */
.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */
.long SYMBOL_NAME(sys_vfork) /* 190 */
而这两项在文件/usr/src/linux/include/asm-386/unistd.h 中却申明如下:
#define __NR_sendfile 187
#define __NR_getpmsg 188 /* some people actually want streams */
#define __NR_putpmsg 189 /* some people actually want streams */
#define __NR_vfork 190
由此可见,在此版本的内核源代码中,由于asmlinkage int sys_ni_syscall(void) 函数并不进行任何操作,所以包括getpmsg, putpmsg 在内的好几个系统调用都是不进行任何操作的,即有待扩充的空调用;但它们却仍然占用着sys_call_table表项,估计这是设计者们为了方便扩充系统调用而安排的,所以只需增加相应服务例程(如增加服务例程getmsg或putpmsg),就可以达到增加系统调用的作用。
3.结束语
要完全解读庞大复杂的Linux内核,一篇文章远远不能介绍清楚,而且与系统调用相关的代码也只是内核中极其微小的一部分,重要的是方法,掌握好的分析方法,所以上述分析只是起个引导作用,而真正的分析还有待读者自己的努力。
浏览量:2
下载量:0
时间:
了解Linux系统命令的相比都知道,sed命令常用于文本文件的处理,今天小编就给大家介绍下如何使用sed命令替换字符串,感兴趣的朋友不妨来了解下吧。
代码如下:
sed ‘s/原字符串/替换字符串/’
单引号里面,s表示替换,三根斜线中间是替换的样式,特殊字符需要使用反斜线””进行转义,但是单引号”‘”是没有办法用反斜线””转义的,这时候只要把命令中的单引号改为双引号就行了,例如:
代码如下:
sed “s/原字符串包含‘/替换字符串包含’/” //要处理的字符包含单引号
命令中的三根斜线分隔符可以换成别的符号,这在要替换的内容有较多斜线是较为方便,只需要紧跟s定义即可,例如换成问号”?”:
代码如下:
sed ‘s?原字符串?替换字符串?’ //自定义分隔符为问号
可以在末尾加g替换每一个匹配的关键字,否则只替换每行的第一个,例如:
代码如下:
sed ‘s/原字符串/替换字符串/’ //替换所有匹配关键字
上箭头”^”表示行首,美元”$”符号如果在引号中表示行尾,但是在引号外却表示末行(最后一行),这里犯二了,搜了半天哪个符号表示首行,半天才想起来,首行就是数字”1″啊。那么在行首和行尾添加字符串就是把行尾和行首替换,例如:
代码如下:
sed ‘s/^/添加的头部&/g’ //在所有行首添加
sed ‘s/$/&添加的尾部/g’ //在所有行末添加
sed ‘2s/原字符串/替换字符串/g’ //替换第2行
sed ‘$s/原字符串/替换字符串/g’ //替换最后一行
sed ‘2,5s/原字符串/替换字符串/g’ //替换2到5行
sed ‘2,$s/原字符串/替换字符串/g’ //替换2到最后一行
替换样式可以多个在同一条命令中执行,用分号”;”分隔,例如:
代码如下:
sed ‘s/^/添加的头部&/g;s/$/&添加的尾部/g’ //同时执行两个替换规则
sed处理过的输出是直接输出到屏幕上的,要保存可以将输出重定向,或者使用参数”i”直接在文件中替换:
代码如下:
sed -i ‘s/原字符串/替换字符串/g’ filename //替换文件中的所有匹配项
上面就是Linux下使用sed命令替换字符串的方法介绍了,sed命令的用法远不止这些,本文只是举个例子给大家简单介绍下sed命令,想要使用sed命令替换字符串的朋友可以做个参考。
浏览量:2
下载量:0
时间:
如果不了解Linux系统线上操作替换文件的话,很容易导致在cp时出现text file busy错误提示,所以掌握Linux系统线上操作替换文件是很重要的,下面随读文网小编一起来了解下吧。
Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和UNIX的多用户、多任务、支持多线程和多CPU的操作系统。它能运行主要的UNIX工具软件、应用程序和网络协议。它支持32位和64位硬件。Linux继承了Unix以网络为核心的设计思想,是一个性能稳定的多用户网络操作系统。Linux操作系统诞生于1991 年10 月5 日(这是第一次正式向外公布时间)。Linux存在着许多不同的Linux版本,但它们都使用了Linux内核。Linux可安装在各种计算机硬件设备中,比如手机、平板电脑、路由器、视频游戏控制台、台式计算机、大型机和超级计算机。
最近发现很多哦鞥有不知道线上操作替换文件的要点。所以系统之家的小编又整理了一下,以便你有个了解。
线上替换一个正在运行进程的文件时(包括二进制、动态库、需要读取的资源文件等)。应避免使用cp/scp操作。而需要使用mv/rsync作为替代。
原因:cp是将源文件截断然后写入新内容。也就是说正在打开这个文件的进程可以立刻感知到修改。修改文件内容很可能导致程序逻辑错误甚至崩溃。而mv则是标记”删除“老文件,然后放一个新的同名文件过去。也就是说老文件和新文件其实是两个不同文件(inode不同),只是名字一样而已。正在打开老文件的进程不会受到影响。如果进程使用了mmap打开某文件(比如载入so),如果目标文件被使用cp覆盖并且长度变小。那么读取差额部分的地址时(在新文件中其实已经不存在了),会导致SIGBUS信号。使进程崩溃。
至于可执行文件本身。倒是不怕cp导致崩溃。。因为cp时会报”text file busy“。压根cp不了。这时候也应该使用mv类操作。替换完成后重启进程。执行的就是新的可执行文件了。
上面就是Linux系统线上操作替换文件的注意事项的介绍了,如果你在cp时提示text file busy的话,可能就是操作方面的错误了,应改为mv类操作。
浏览量:2
下载量:0
时间:
Linux系统操作中,安装设备驱动时有时需要安装内核头文件,而很多朋友并不知道什么是内核头文件,自然也不知道要如何安装,下面读文网小编就给大家介绍下Linux安装内核头文件的方法。
提问:我在安装一个设备驱动前先要安装内核头文件。怎样安装合适的内核头文件?
当你在编译一个设备驱动模块时,你需要在系统中安装内核头文件。内核头文件同样在你编译与内核直接链接的用户空间程序时需要。当你在这些情况下安装内核头文件时,你必须确保内核头文件精确地与你当前内核版本匹配(比如:3.13.0-24-generic)。
如果你的内核是发行版自带的内核版本,或者使用默认的包管理器的基础仓库升级的(比如:apt-ger、aptitude或者yum),你也可以使用包管理器来安装内核头文件。另一方面,如果下载的是kernel源码并且手动编译的,你可以使用make命令来安装匹配的内核头文件。
现在我们假设你的内核是发行版自带的,让我们看下该如何安装匹配的头文件。
在 Debian、Ubuntu 或者 Linux Mint 上安装内核头文件
假设你没有手动编译内核,你可以使用apt-get命令来安装匹配的内核头文件。
$ rpm -qa | grep kernel-headers-$(uname -r)
kernel-headers-3.10.0-123.9.3.el7.x86_64
Fedora、CentOS 或者 RHEL上默认内核头文件的位置是/usr/include/linux。
上面就是Linux安装内核头文件的方法介绍了,需要注意的是,在安装内核头文件的时候使用yum命令可以自动找到合适的头文件安装,避免不必要的麻烦。
浏览量:2
下载量:0
时间:
今天,读文网小编就给大家说说Linux内核驱动fsync机制的实现,如果对本文有兴趣的可以跟着小编一起往下看,具体内容如下:
1、定义一个全局的struct fasync_struct指针;
2、实现file_operations中的fasync方法,基本就是调用内核的辅助函数fasync_helper。
3、在驱动某个可以获知数据可访问信息的例程中调用kill_fasync函数。
通过以上内核与应用的配合,就可以方便的使用内核异步通知机制。这种机制用起来简单,观其机制,一开始觉得挺复杂的,一旦深入将所有相关的结构体和例程整理一下就会发现,其实这个机制的实现也很清楚明了。读文网小编一直认为对于内核的学习,首先要理清构架及数据结构间的关系。而看别人的代码分析能让你适当的理解下构架,最后关键在于自己RTFSC。所以读文网小编现在一般不再博文中分析代码,而只说构架和图解,代码需要有兴趣的朋友自己分析。最后如果觉得本文不错的话,就在文章下方给小编点个赞吧。
浏览量:2
下载量:0
时间:
对于单个文件,使用sed命令很容易做到。如果需要替换某个指定文件夹下所有文件,借助grep和sed组合成一条命令也可以轻松搞定。那么如何操作呢?读文网小编就给大家讲解一下具体方法。
grep命令可以查找单个文件或文件夹下文件中的内容,使用参数“r”或“-R”可以递归查找指定文件夹下的所有文件;参数“l”可以让grep输出包含指定字符串的文件名,首次匹配成功后立刻停止对同文件的查询。如果不使用“l“,grep查询单个文件时输出文件中所有包含指定字符串的行,对文件夹查询时则按照“文件名:包含字符串行”的方式输出。
find . -type -d -name *.html|xargs chmod 755
浏览量:2
下载量:0
时间:
今天读文网小编就要跟大家讲解下从Linux内核访问用户空间内存的方法~那么对此感兴趣的网友可以多来了解了解下。下面就是具体内容!!!
Linux内核访问用户空间内存的方法
首先读文网小编必须要给大家科普下什么是Linux 内存
在 Linux 中,用户内存和内核内存是独立的,在各自的地址空间实现。地址空间是虚拟的,就是说地址是从物理内存中抽象出来的(通过一个简短描述的过程)。由于地址空间是虚拟的,所以可以存在很多。事实上,内核本身驻留在一个地址空间中,每个进程驻留在自己的地址空间。这些地址空间由虚拟内存地址组成,允许一些带有独立地址空间的进程指向一个相对较小的物理地址空间(在机器的物理内存中)。不仅仅是方便,而且更安全。因为每个地址空间是独立且隔离的,因此很安全。
但是与安全性相关联的成本很高。因为每个进程(和内核)会有相同地址指向不同的物理内存区域,不可能立即共享内存。幸运的是,有一些解决方案。用户进程可以通过 Portable Operating System Interface for UNIX? (POSIX) 共享的内存机制(shmem)共享内存,但有一点要说明,每个进程可能有一个指向相同物理内存区域的不同虚拟地址。
虚拟内存到物理内存的映射通过页表完成,这是在底层软件中实现的(见图 1)。硬件本身提供映射,但是内核管理表及其配置。注意这里的显示,进程可能有一个大的地址空间,但是很少见,就是说小的地址空间的区域(页面)通过页表指向物理内存。这允许进程仅为随时需要的网页指定大的地址空间。
图 1. 页表提供从虚拟地址到物理地址的映射
由于缺乏为进程定义内存的能力,底层物理内存被过度使用。通过一个称为 paging(然而,在 Linux 中通常称为 swap)的进程,很少使用的页面将自动移到一个速度较慢的存储设备(比如磁盘),来容纳需要被访问的其它页面(见图 2 )。这一行为允许,在将很少使用的页面迁移到磁盘来提高物理内存使用的同时,计算机中的物理内存为应用程序更容易需要的页面提供服务。注意,一些页面可以指向文件,在这种情况下,如果页面是脏(dirty)的,数据将被冲洗,如果页面是干净的(clean),直接丢掉。
图 2. 通过将很少使用的页面迁移到速度慢且便宜的存储器,交换使物理内存空间得到了更好的利用
MMU-less 架构
不是所有的处理器都有 MMU。因此,uClinux 发行版(微控制器 Linux)支持操作的一个地址空间。该架构缺乏 MMU 提供的保护,但是允许 Linux 运行另一类处理器。
选择一个页面来交换存储的过程被称为一个页面置换算法,可以通过使用许多算法(至少是最近使用的)来实现。该进程在请求存储位置时发生,存储位置的页面不在存储器中(在存储器管理单元 [MMU] 中无映射)。这个事件被称为一个页面错误 并被硬件(MMU)删除,出现页面错误中断后该事件由防火墙管理。该栈的详细说明见 图 3。
Linux 提供一个有趣的交换实现,该实现提供许多有用的特性。Linux 交换系统允许创建和使用多个交换分区和优先权,这支持存储设备上的交换层次结构,这些存储设备提供不同的性能参数(例如,固态磁盘 [SSD] 上的一级交换和速度较慢的存储设备上的较大的二级交换)。为 SSD 交换附加一个更高的优先级使其可以使用直至耗尽;直到那时,页面才能被写入优先级较低的交换分区。
图 3. 地址空间和虚拟 - 物理地址映射的元素
并不是所有的页面都适合交换。考虑到响应中断的内核代码或者管理页表和交换逻辑的代码,显然,这些页面决不能被换出,因此它们是固定的,或者是永久地驻留在内存中。尽管内核页面不需要进行交换,然而用户页面需要,但是它们可以被固定,通过 mlock(或 mlockall)函数来锁定页面。这就是用户空间内存访问函数的目的。如果内核假设一个用户传递的地址是有效的且是可访问的,最终可能会出现内核严重错误(kernel panic)(例如,因为用户页面被换出,而导致内核中的页面错误)。该应用程序编程接口(API)确保这些边界情况被妥善处理。
内核 API
现在,让我们来研究一下用户操作用户内存的内核 API。请注意,这涉及内核和用户空间接口,而下一部分将研究其他的一些内存 API。用户空间内存访问函数在表 1 中列出。
表 1. 用户空间内存访问 API
正如您所期望的,这些函数的实现架构是独立的。例如在 x86 架构中,您可以使用 ./linux/arch/x86/lib/usercopy_32.c 和 usercopy_64.c 中的源代码找到这些函数以及在 ./linux/arch/x86/include/asm/uaccess.h 中定义的字符串。
当数据移动函数的规则涉及到复制调用的类型时(简单 VS. 聚集),这些函数的作用如图 4 所示。
图 4. 使用 User Space Memory Access API 进行数据移动
access_ok 函数
您可以使用 access_ok 函数在您想要访问的用户空间检查指针的有效性。调用函数提供指向数据块的开始的指针、块大小和访问类型(无论这个区域是用来读还是写的)。函数原型定义如下:
access_ok(type,addr,size);
type 参数可以被指定为 VERIFY_READ 或 VERIFY_WRITE。VERIFY_WRITE 也可以识别内存区域是否可读以及可写(尽管访问仍然会生成 -EFAULT)。该函数简单检查地址可能是在用户空间,而不是内核。
get_user 函数
要从用户空间读取一个简单变量,可以使用 get_user 函数,该函数适用于简单数据类型,比如,char 和 int,但是像结构体这类较大的数据类型,必须使用 copy_from_user 函数。该原型接受一个变量(存储数据)和一个用户空间地址来进行 Read 操作:
get_user(x,ptr);
get_user 函数将映射到两个内部函数其中的一个。在系统内部,这个函数决定被访问变量的大小(根据提供的变量存储结果)并通过 __get_user_x 形成一个内部调用。成功时该函数返回 0,一般情况下,get_user 和 put_user 函数比它们的块复制副本要快一些,如果是小类型被移动的话,应该用它们。
put_user 函数
您可以使用 put_user 函数来将一个简单变量从内核写入用户空间。和 get_user 一样,它接受一个变量(包含要写的值)和一个用户空间地址作为写目标:
put_user(x,ptr);
和 get_user 一样,put_user 函数被内部映射到 put_user_x 函数,成功时,返回 0,出现错误时,返回 -EFAULT。
clear_user 函数
clear_user 函数被用于将用户空间的内存块清零。该函数采用一个指针(用户空间中)和一个型号进行清零,这是以字节定义的:
clear_user(ptr,n);
在内部,clear_user 函数首先检查用户空间指针是否可写(通过 access_ok),然后调用内部函数(通过内联组装方式编码)来执行 Clear 操作。使用带有 repeat 前缀的字符串指令将该函数优化成一个非常紧密的循环。它将返回不可清除的字节数,如果操作成功,则返回 0。
copy_to_user 函数
copy_to_user 函数将数据块从内核复制到用户空间。该函数接受一个指向用户空间缓冲区的指针、一个指向内存缓冲区的指针、以及一个以字节定义的长度。该函数在成功时,返回 0,否则返回一个非零数,指出不能发送的字节数。
copy_to_user(to,from,n);
检查了向用户缓冲区写入的功能之后(通过 access_ok),内部函数 __copy_to_user 被调用,它反过来调用 __copy_from_user_inatomic(在 ./linux/arch/x86/include/asm/uaccess_XX.h 中。其中 XX 是 32 或者 64 ,具体取决于架构。)在确定了是否执行 1、2 或 4 字节复制之后,该函数调用 __copy_to_user_ll,这就是实际工作进行的地方。在损坏的硬件中(在 i486 之前,WP 位在管理模式下不可用),页表可以随时替换,需要将想要的页面固定到内存,使它们在处理时不被换出。i486 之后,该过程只不过是一个优化的副本。
copy_from_user 函数
copy_from_user 函数将数据块从用户空间复制到内核缓冲区。它接受一个目的缓冲区(在内核空间)、一个源缓冲区(从用户空间)和一个以字节定义的长度。和 copy_to_user 一样,该函数在成功时,返回 0 ,否则返回一个非零数,指出不能复制的字节数。
copy_from_user(to,from,n);
该函数首先检查从用户空间源缓冲区读取的能力(通过 access_ok),然后调用 __copy_from_user,最后调用 __copy_from_user_ll。从此开始,根据构架,为执行从用户缓冲区到内核缓冲区的零拷贝(不可用字节)而进行一个调用。优化组装函数包含管理功能。
strnlen_user 函数
strnlen_user 函数也能像 strnlen 那样使用,但前提是缓冲区在用户空间可用。strnlen_user 函数带有两个参数:用户空间缓冲区地址和要检查的最大长度。
strnlen_user(src,n);
strnlen_user 函数首先通过调用 access_ok 检查用户缓冲区是否可读。如果是 strlen 函数被调用,max length 参数则被忽略。
strncpy_from_user 函数
strncpy_from_user 函数将一个字符串从用户空间复制到一个内核缓冲区,给定一个用户空间源地址和最大长度。
strncpy_from_user(dest,src,n);
由于从用户空间复制,该函数首先使用 access_ok 检查缓冲区是否可读。和 copy_from_user 一样,该函数作为一个优化组装函数(在 ./linux/arch/x86/lib/usercopy_XX.c 中)实现。
内存映射的其他模式
上面部分探讨了在内核和用户空间之间移动数据的方法(使用内核初始化操作)。Linux 还提供一些其他的方法,用于在内核和用户空间中移动数据。尽管这些方法未必能够提供与用户空间内存访问函数相同的功能,但是它们在地址空间之间映射内存的功能是相似的。
在用户空间,注意,由于用户进程出现在单独的地址空间,在它们之间移动数据必须经过某种进程间通信机制。Linux 提供各种模式(比如,消息队列),但是最着名的是 POSIX 共享内存(shmem)。该机制允许进程创建一个内存区域,然后同一个或多个进程共享该区域。注意,每个进程可能在其各自的地址空间中映射共享内存区域到不同地址。因此需要相对的寻址偏移(offset addressing)。
mmap 函数允许一个用户空间应用程序在虚拟地址空间中创建一个映射,该功能在某个设备驱动程序类中是常见的,允许将物理设备内存映射到进程的虚拟地址空间。在一个驱动程序中,mmap 函数通过 remap_pfn_range 内核函数实现,它提供设备内存到用户地址空间的线性映射。
结束语
本文讨论了 Linux 中的内存管理主题,然后讨论了使用这些概念的用户空间内存访问函数。在用户空间和内核空间之间移动数据并没有表面上看起来那么简单,但是 Linux 包含一个简单的 API 集合,跨平台为您管理这个复杂的任务。
浏览量:2
下载量:0
时间:
linux发行版本有很多种,但是其内核大多使用的是标准的linux内核,只是版本不同而已,所以,想要深入学习linux开发及其原理,学习研究内核是必不可少的,下面读文网小编就为大家介绍一下如何下载linux内核
打开百度官网,输入kernel内核开始搜索,
找到官网,点击打开,网络速度可能比较慢
打开后我们在其首页就可以看到最近版本的linux内核下载按钮,这里我们下载的linux4.2.3版本的内核
下载好后我们会得到一个压缩包,但是根据我的实验,在windows下打开会报错,所以我们这里将其转入到linux下解压打开
如图,这是我解压后的linux内核压缩包,进入该文件夹,我们会看到很多内核相关的文件及文件夹
这时我们就可以用vi或者vim编辑器来研究分析我们的linux内核了
浏览量:4
下载量:0
时间:
当我们需要在Linux系统中安装一些软件而去下载安装文件时,一般都需要确认到底下载哪个版本的安装包,这就需要我们知道自己的Linux系统到底是什么版本、什么内核,下面跟着读文网小编一起来了解一下Linux怎么查看系统已安装内核吧。
操作方法:
RHEL/CentOS/Fedora
在终端中执行如下命令查看已安装的 Linux 内核:
rpm -qa kernel
或
rpm -qa | grep -i kernel
Debian/Ubuntu/Linux Mint
要查看基于 DEB 系统的 Linux 内核列表,如:Debian、Ubuntu、Linux Mint、Elementary OS 等,可以使用如下命令:
dpkg --list | grep linux-image
SUSE/openSUSE
在 SUSE 或 openSUSE 系统中,可以使用如下命令查看 Linux 系统内核:
rpm -qa | grep -i kernel
Arch Linux
Arch Linux 及其衍生发行版本,可以使用如下命令查看已安装的内核列表:
pacman -Q linux
或
pacman -Q | grep linux
以上就是查看已安装的Linux内核的操作方法,如果你也不懂怎么查看内核,可以根据上面介绍的方法来操作。
浏览量:3
下载量:0
时间:
由于内核更新速度很快,总是有更新,每更新一次,启动菜单上就会多一个内核版本菜单,时间一长,会积累很多,鉴于此,在不使用旧版内核时,可以将其删除。那么Linux系统怎么删除旧内核?下面跟着读文网小编一起去了解下吧。
Linux系统本身就是一个开源的系统,所以在使用过程中可以进行修改,只有它的内核是不变的,只有在一段时间之内,才可以对Linux内核进行升级。升级了以后就会留下一些旧的无用的内核,中本文就以Ubuntu系统为例,来介绍一下Linux系统如何删除旧内核?
首先可查看当前用的内核是哪个,可通过命令:uname -a 来获得信息。例如我台式机上显示为:
magc@magc-desktop:~$ uname -a
Linux magc-desktop 2.6.24-19-rt #1 SMP PREEMPT RT Thu Aug 21 02:08:03 UTC 2008 i686 GNU/Linux
然后通过查看本机上所有内核的列表来决定哪些需要删除掉:
运行命令:dpkg --get-selections|grep linux 例如我本机显示为:
magc@magc-desktop:~$ dpkg --get-selections|grep linux
libselinux1 install
linux-generic install
linux-headers-2.6.24-19 install
linux-headers-2.6.24-19-generic install
linux-headers-2.6.24-19-rt install
linux-headers-2.6.24-21 install
linux-headers-2.6.24-21-generic install
linux-headers-2.6.24-21-rt install
linux-headers-generic install
linux-headers-rt install
linux-image-2.6.24-19-generic deinstall
linux-image-2.6.24-19-rt install
linux-image-2.6.24-21-generic install
linux-image-generic install
linux-image-rt install
linux-restricted-modules-2.6.24-19-generic deinstall
linux-restricted-modules-2.6.24-19-rt install
linux-restricted-modules-2.6.24-21-generic install
linux-restricted-modules-common install
linux-restricted-modules-generic install
linux-restricted-modules-rt install
linux-rt install
linux-sound-base install
linux-ubuntu-modules-2.6.24-19-generic deinstall
linux-ubuntu-modules-2.6.24-19-rt install
linux-ubuntu-modules-2.6.24-21-generic install
util-linux install
util-linux-locales install
其中带有image的就是内核文件,因此可看出我的机器上共五个内核版本。我当前使用的是2.6.24-19-rt,所以决定将其它没用的内核删除。
删除的命令为:sudo apt-get remove linux-image-XXXX
例如删除linux-image-2.6.24-19-generic内核的办法就是:
sudo apt-get remove linux-image-2.6.24-19-generic
以上就是Linux系统如何删除旧内核的全部内容了,首先找到旧内核,记录它们的名称。然后用sudo apt-get remove删除就可以了。
看过“ Linux系统怎么删除旧内核 ”
浏览量:3
下载量:0
时间:
“内核”指的是一个提供硬件抽象层、磁盘及文件系统控制、多任务等功能的系统软件。一个内核不是一套完整的操作系统。一套基于Linux内核的完整操作系统叫作Linux操作系统,或是GNU/Linux。读文网小编为大家带来了linux操作系统内核分析详解,希望大家喜欢。
一、操作系统概述
在Richard Stevens的unix环境高级编程中这样定义“它控制计算机硬件资源,提供程序运行环境。一般而言我们称这种软件为内核(kernel),它相对较小,位于环境的中心”。总结下就是控制硬件,提供环境。程序员主要关心的是所谓的环境,主要说下提供什么环境。
操作系统都会想它们运行的程序提供各种服务,执行新的程序,打开文件,读文件,分配存储空间,获得当前时间等(一般通过系统调用)。
广义上,操作系统还有内核外的系统调用,基于系统调用的shell(也是一种特殊的应用程序,为其他应用程序提供接口)和库函数(对系统调用的封装),和基于shell,系统调用,库函数(这三个东西基本组成了我们常用的环境)的应用软件。有图如下:
在使用linux的man帮助的时候可以指定是查询系统命令还是系统调用使用man时可以指定不同的section来浏览,各个section 如下:
1 - commands
2 - system calls
3 - library calls
其实还有其他的section 不常见就没有列出来,可以man 1 chmod 也可以 man 2 chmod 得到的帮助内容是不同的。
为了增加unix可移植性,IEEE定义了POSIX的标准,后来这个标准不只限于unix操作系统。POSIX标准只是定义了一套接口,并没有规定接口的实现(类似于概要设计),(各个操作系统对接口的实现可能有所不同),也没有详细的区分系统调用和库函数,所有的例程都叫做函数。需要说明的是,并不是每个操作系统都严格遵守POSIX标准,POSIX标准现在是一个很大的协议族(类似于TCP/IP),标准很多。
二、Linux 是什么内核是什么
Linus Torvalds1991年的一片文章上写道“
LINUX is a free unix-like kernel for 386-AT computers, coming with full source code. It is meant for hackers/computer science students to use, learn and enjoy. It is written mostly inC, but parts of it are in gnu-format assembler, and the boot-sequence is in intel 086 assembly language. TheC-code is relatively ANSI, with a few GNU enhancements (mostly__asm__ andinline).
”-其实,linux只是一个主要用c写的内核。
从不同的角度来看,内核担任的角色不同。从纯技术角度来看,内核只是软件和硬件的一个中间层,它把从软件发来的请求发送给硬件,完成寻址等操作,还充当了底层驱动。
从应用程序角度来看,内核是对硬件的一个高层次的抽象,应用程序与硬件没有联系,只与内核有联系,内核是应用程序知道的最底层。
从多个并发的进程的角度来看,内核是一个资源管理器,它完成对进程的切换,调度,共享计算机资源(CPU,内存,磁盘,网络等)。
还可以把内核看成一个库,通过系统调用向内核发送各种请求。
三、内核有什么
这个问题是淘宝面试的时候问我的问题,当时不知道从何下手,简单的总结下。有什么,最简单的就是直接看看内核源代码文件夹下有什么,一般内核文件在linux的目录/usr/src/kernels的文件夹下,我安装的操作系统是redhet的,当时没有安装上内核源文件,而且即使是安装上了也是2.6版本的,也不便于学习,所以下载了一个0.11版本的在http://www.oldlinux.org/index_cn.html上面,1.0版本及以上的可在http://www.kernel.org/pub/linux/kernel/上下载到。
简单看下1.0版本有什么文件主要的:
drivers:驱动代码
fs:文件系统的代码
include :包含文件,这个文件利用其他模块重建内核
init:初始化代码,内核工作的起点 //这里面有内核初始化程序main.c,是内核完成所有初始化工作并进入正常运行的关键
ipc:进程间通信的相关代码
kernel:主内核的代码 //最重要的是进程调度函数schedule()、sleep_on()函数和有关的系统调用程序
mm:内存管理的代码
net:网络管理的代码
0.11版本的.c文件代码有8578行,而1.0版本里面的.c文件代码大概有14w行,其中drives文件夹下就有7w行,2.6版本的有几百万行,估计那是任何大婶也读不完的~
上面简单的说明了源代码的目录结构,如果从系统的结构来看,linux操作系统可以分成五个比较核心的模块,进程调度模块,内存管理模块,文件系统模块,进程间通信模块和网络接口模块。其中的内存管理模块用于确保所有的进程能够安全地共享机器主要内存区,同时内存管理模块还支持虚拟内存的管理方式,使得Linux支持进程使用比实际内存空间多的内存容量。文件系统模块用于支持对外部设备的驱动和存储,虚拟文件系统模块通过对向所有的外部存储设备提供一个通用的文件接口,隐藏了各种硬件设备的不同细节,提高兼容性。下面是操作系统各个模块间的简单关系,虚线和虚框表示0.11上还为实现。
从图中可以看出,所有的模块都与进程调度模块存在依赖关系,因为他们都需要依靠进程调度程序来挂起(暂停)或重新运行它们的进程。还可以根据源代码的结构将内核结构划分成如下的形式:
浏览量:2
下载量:0
时间:
sysctl配置与显示在/proc/sys目录中的内核参数.可以用sysctl来设置或重新设置联网功能,如IP转发、IP碎片去除以及源路由检查等。用户只需要编辑/etc/sysctl.conf文件,即可手工或自动执行由sysctl控制的功能。小编为大家分享了 Linux怎么在系统运行过程中修改内核参数的方法,下面大家跟着读文网小编一起来了解一下吧。
RedHat向管理员提供了非常好的方法,使我们可以在系统运行时更改内核参数,而不需要重新引导系统。这是通过/proc虚拟文件系统实 现的。/proc/sys目录下存放着大多数的内核参数,并且设计成可以在系统运行的同时进行更改。下面我们以打开内核的 ip转发功能为例说明在系统运行时修改内核参数的两种方法。IP转发是指允许系统对来源和目的地都不是本机的数据包通过网络,RedHat默认屏蔽此功 能,在 需要用本机作为路由器、NAT等情况下需要开启此功能。
方法一:修改/proc下内核参数文件内容
直接修改内核参数ip_forward对应在/proc下的文件/proc/sys/net/ipv4/ip_forward。用下面命令查看ip_forward文件内容:
# cat /proc/sys/net/ipv4/ip_forward
该文件默认值0是禁止ip转发,修改为1即开启ip转发功能。修改命令如下:
# echo 1 >/proc/sys/net/ipv4/ip_forward
修改过后就马上生效,即内核已经打开ip转发功能。但如果系统重启后则又恢复为默认值0,如果想永久打开需要通过修改/etc/sysctl.conf文件的内容来实现。
方法二.修改/etc/sysctl.conf文件
默认sysctl.conf文件中有一个变量是
net.ipv4.ip_forward = 0
将后面值改为1,然后保存文件。因为每次系统启动时初始化脚本/etc/rc.d/rc.sysinit会读取/etc/sysctl.conf文件的 内容,所以修改后每次系统启动时都会开启ip转发功能。但只是修改sysctl文件不会马上生效,如果想使修改马上生效可以执行下面的命令:
# sysctl –p
在修改其他内核参数时可以向/etc/sysctl.conf文件中添加相应变量即可,下面介绍/proc/sys下内核文件与配置文件 sysctl.conf中变量的对应关系,由于可以修改的内核参数都在/proc/sys目录下,所以sysctl.conf的变量名省略了目录的前面部 分(/proc/sys)。
将/proc/sys中的文件转换成sysctl中的变量依据下面两个简单的规则:
1.去掉前面部分/proc/sys
2.将文件名中的斜杠这两条规则可以将/proc/sys中的任一文件名转换成sysctl中的变量名。
例如:
/proc/sys/net/ipv4/ip_forward =》 net.ipv4.ip_forward
/proc/sys/kernel/hostname =》 kernel.hostname
可以使用下面命令查询所有可修改的变量名
# sysctl –a
下面例举几个简单的内核参数:
1./proc/sys/kernel/shmmax
该文件指定内核所允许的最大共享内存段的大小。
2./proc/sys/kernel/threads-max
该文件指定内核所能使用的线程的最大数目。
3./proc/sys/kernel/hostname
该文件允许您配置网络主机名。
4./proc/sys/kernel/domainname
该文件允许您配置网络域名。
看过“ 怎么在 Linux系统运行过程中修改内核参数 ”
浏览量:2
下载量:0
时间: