为您找到与cpu和cpu核心相关的共200个结果:
Intel挤牙膏式的升级换代方式虽然令很多玩家不爽,但是Skylake的出现还是给我们带来了不少的惊喜。能耗的降低,核显及超频性能的提升都令新架构CPU会成为接下来玩家组件平台会去选择的产品。而除了首发的i5 6600k以及i7 6700K,众多标准CPU也在京东商城开售,玩家们可以选择到自己需求的CPU。
虽然skylake相距上一代产品只有半年时间,同样采用14nm制程工艺,但整体功耗有所降低,同时超频性能也有一定程度的提升。首发的两款产品6600K和6700K超频更加容易实现,并且超频性能较上一代同级产品有10%以上得提升。
但同时,采用LGA 1151规格势必需要重新购买主板,这对于想要体验新平台的用户可能是一个需要去考量的因素。毕竟CPU+主板一起更换经济成本比较高,同时玩家对于当前的CPU无论是价格和性能都在持一种观望的态度。不过,什么都不会阻挡想要尝鲜的玩家的购买欲望,接下来读文网小编带大家就看看这几款CPU的市场行情及具体性能。
Intel 酷睿i5-6600K是Skylake升级款处理器中一款中端超频产品,定位类似于酷睿i5-4690K。该处理器四核四线程,默认主频为3.5GHz,默认频率下的性能表现上比酷睿i5-4690K高出10%左右。目前该款处理器卖场1649元,喜欢的朋友不妨看看。
Intel 酷睿i5-6600K采用14纳米工艺制程,插槽类型为LGA 1151,原生内置四核心,四线程,处理器默认主频高达3.5GHz,三级高速缓存容量高达6MB,这样使得CPU在处理数据时提高了命中率,并且使软件加载时间大大缩短。内存控制器为双通道DDR3L/4 1600/2133MHz,使得系统在数据读取方面迅速,以避免在CPU在数据调用时造成的性能瓶颈。由于采用了最新的制作工艺,也将为玩家带来更低的功耗和发热,让系统运行更加持续、稳定。
产品卖点:
● 处理器接口改为LGA 1151
● 处理器原生内置四颗物理核心
● Skylake新架构,支持DDR4内存
● 内部集成Intel HD Graphic 530核芯显卡
● 采用全新14纳米工艺制程,更低的功耗和发热
编辑点评:Skylake是Intel的“Tock”产品,虽然相比Broadwell性能并没有巨大的飞跃,但14nm意味着更高的效率和更大的晶体管密度,但对于游戏玩家来说,Skylake处理器有着更吸引人的地方,就是DDR4的支持、更多的PCIe线路和更高的时钟频率、更强的超频能力,高玩们绝对会喜爱。
浏览量:4
下载量:0
时间:
如何用安兔兔查看手机CPU核心数呢?下面读文网小编就为大家介绍一下相关的查看方法吧,希望对大家有所帮助。
1.首先我们需要在手机上面安装一个安兔兔测评软件。 可以在电脑上面下载了安装到手机上面。
2.打开安兔兔测评, 然后切换到设备信息!然后往下拉! 到CPU这块就能看到自己的手机是几核的。 比方我这核心数是4 就是四核手机!!
浏览量:4
下载量:0
时间:
下面读文网小编就为大家介绍一下关于CPU无核心供电检测流程,欢迎大家参考和学习。
大家看清楚流程中测量点!不要按照自己的主观臆断去测量!
1.供电(12V,5V具体看情况,可以去查PDF资料!供电可能不只一个!)
2.VID线(必须让电压IC认为我们已经上了CPU!负载上VID要连接好!注意:空板上电VID要有3.3V电压!一般来自一个102电阻上拉供电!上假负载后相应的VID线要接地!具体看VRM的设置!)
3.PG信号(2-3V左右)
如果工作条件都正常则更换电压IC
量电压IC外围的贴片电阻(基本知识要注意啊,不要在路量,要拆下来!478主板要特别注意查看电压IC相连的10Ω小电阻是否烧毁,10Ω会变成30Ω.)
更换电压IC外围的小三极管
还有一次我的假负载VID的位置短了根针,怎么搞都没有核心供电,后来看了下VID.........
郁闷啊!所以写个流程出来,按流程检测可以少走很多的弯路!大家按流程查就好了!
CPU核心供电处上下管D极对地阻值(可大不可小)
370针CPU座
上管D极≥150Ω(品牌机只有80Ω左右) 上管G极≥100Ω
下管D极≥100Ω 下管G极≥100Ω
462针CPU座
上管D极≥150Ω 上管G极≥400Ω
下管D极≥20Ω 下管G极≥400Ω
478针CPU座
上管D极≥250Ω 上管G极≥400Ω
下管D极≥20Ω 下管G极≥400Ω
754针CPU座
上管D极≥200Ω 上管G极≥300Ω
下管D极≥15Ω 下管G极≥300Ω
775针CPU座
上管D极≥250Ω 上管G极 300Ω-500Ω
下管D极≥15Ω 下管G极 300Ω-500Ω
939针CPU座
上管D极≥200Ω 上管G极≥500Ω
下管D极≥30Ω 下管G极≥500Ω
问题说清楚了!终于找到问题的关键点了!我们说的测试点不是一个地方!
区分好两个测量点:
1)假负载上核心供电点
2)核心供电的电感处
正常状况下这两个点是连通的,但是如果座子空焊那么电感处还是有阻值的,但是假负载上的点阻值就无穷大了!
我上面的流程中说的是上假负载测量假负载上核心供电点的阻值!
浏览量:3
下载量:0
时间:
CPU的核心数是真实存在的CPU处理器的个数,喜欢玩游戏的用户都比较重视这个,关系着win7系统运行速度。所以在选择电脑的时候,都会先查看一下CPU的核心数。但具体Win7系统如何查看CPU核心数?小编对这个问题进行研究后发现,按照下面方法可以很好查看CPU核心数,感兴趣或有需要的用户一起看看吧。
打开任务管理器,选择性能选项,可以查看CPU的运行使用记录,图中可以看出四核。
以上两种方法都可以查看Win7的CPU核心数,我们还可以通过第三方软件来查看,CPU的性能越来,玩游戏的时候就越顺畅。
WIN7的CPU相关
浏览量:3
下载量:0
时间:
CPU的核心是什么?处理器CPU知识①CPU的分类CPU品牌有两大阵营,分别是Intel(英特尔)和AMD,这两个行业老大几乎垄断了CPU市场,大家拆开电脑看看,无非也是Intel和AMD的品牌(当然不排除极极少山寨的CPU)。下面就由读文网小编来给大家说说CPU的核心是什么吧,欢迎大家前来阅读!
核心(Die)又称为内核,是CPU最重要的组成部分。CPU中心那块隆起的芯片就是核心,是由单晶硅以一定的生产工艺制造出来的,CPU所有的计算、接受/存储命令、处理数据都由核心执行。各种CPU核心都具有固定的逻辑结构,一级缓存、二级缓存、执行单元、指令级单元和总线接口等逻辑单元都会有科学的布局。
为了便于CPU设计、生产、销售的管理,CPU制造商会对各种CPU核心给出相应的代号,这也就是所谓的CPU核心类型。
不同的CPU(不同系列或同一系列)都会有不同的核心类型(例如Pentium4的Northwood,Willamette以及K6-2的CXT和K6-2+的ST-50以及最新酷睿2的Conroe等等),甚至同一种核心都会有不同版本的类型(例如Northwood核心就分为B0和C1等版本),核心版本的变更是为了修正上一版存在的一些错误,并提升一定的性能,而这些变化普通消费者是很少去注意的。
每一种核心类型都有其相应的制造工艺(例如0.25um、0.18um、0.13um、0.09um以及最新的65nm、45nm等)、核心面积(这是决定CPU成本的关键因素,成本与核心面积基本上成正比)、核心电压、电流大小、晶体管数量、各级缓存的大小、主频范围、流水线架构和支持的指令集(这两点是决定CPU实际性能和工作效率的关键因素)、功耗和发热量的大小、封装方式(例如S.E.P、PGA、FC-PGA、FC-PGA2等等)、接口类型(例如Socket370,SocketA,Socket478,SocketT,Slot1,Socket940,SocketAM2,LGA775等等)、前端总线频率(FSB)等等。因此,核心类型在某种程度上决定了CPU的工作性能。
一般说来,新的核心类型往往比老的核心类型具有更好的性能(例如同频的Northwood核心Pentium41.8AGHz就要比Willamette核心的Pentium41.8GHz性能要高),但这也不是绝对的,这种情况一般发生在新核心类型刚推出时,由于技术不完善或新的架构和制造工艺不成熟等原因,可能会导致新的核心类型的性能反而还不如老的核心类型的性能。
例如,早期Willamette核心Socket423接口的Pentium4的实际性能不如Socket370接口的Tualatin核心的PentiumIII和赛扬,现在的低频Prescott核心Pentium4的实际性能不如同频的Northwood核心Pentium4等等,但随着技术的进步以及CPU制造商对新核心的不断改进和完善,新核心的中后期产品的性能必然会超越老核心产品。目前市面上的英特尔酷睿2和AMD羿龙(Phenom)甚至最新的英特尔Corei7都是非常优秀的CPU。
CPU核心的发展方向是更低的电压、更低的功耗、更先进的制造工艺、集成更多的晶体管、更小的核心面积(这会降低CPU的生产成本从而最终会降低CPU的销售价格)、更先进的流水线架构和更多的指令集、更高的前端总线频率、集成更多的功能(例如集成内存控制器等等)以及双核心和多核心(也就是1个CPU内部有2个或更多个核心)等。CPU核心的进步对普通消费者而言,最有意义的就是能以更低的价格买到性能更强的CPU。
浏览量:3
下载量:0
时间:
现在的高速中央处理器(CPU)在提供极高的性能的同时,对于其供电电源的各项指标的要求也达到了前所未有的高度。更高速的CPU需要更低的核心电压,却需要更大的功率,因此供电电路必须提供极大的电流。更好的解决核心电压的供电问题已经成为电压变换模块和PC主板设计者面临的极大挑战。下面让我们一起去看看大功率CPU核心电压供电电路的设计。
1 引言
当今的高速中央处理器(CPU)在提供极高的性能的同时,对于其供电电源的各项指标的要求也达到了前所未有的高度。更高速的CPU需要更低的核心电压,却需要更大的功率,因此供电电路必须提供极大的电流。更好的解决核心电压的供电问题已经成为电压变换模块和PC主板设计者面临的极大挑战。
2 Intel相关规范对CPU核心电压的要求
Intel早期的CPU,如Pentium 2、Pentium 3都遵循Intel的VRM(Voltage Regulation Module)8.1~8.4电源规范,其最大输出电流值为22.6A。Tualatin核心的Pcntium 3及Celeron CPU则开始引入VRM8.5标准,其最大输出电流值为28AIntel在推出Willamette、NorthWood核心的Pentium4时引入了VRM9.O标准,其规定的最大输出电流为70A。随着Prescott核心Pentium 4的推出,VRM规范也更新到了VRD(Voltage Regulator Down)10.O,电流最大值也达到了91A。为了配合更高频率更高性能的CPU,200 5年4月Intel推出了VRDl0.1规范,对LGA775 Socket的CPU的供电电源的规格指标进行了细致的规定,这是对台式机CPU供电电源要求极高的电源规范,其要求列举如下:
(1)连续负载电流(ICCTDC)为115A;
(2)最大输出电流(ICCMAX)为125A;
(3)输出的电压值由VID[5:0]指定,范围为O.837 5~1.6V.以0.0125V为步进;
(4)负载线斜率(loadline slope)阻抗R0为1.00mΩ;
(5)最大电压纹波VRIPPLE为±5mV;
(6)最大电压上冲波峰VOS_MAX为50mv,其最长持续时间为25μs。
这里只是列举了最为重要的几个规定,VRDl0.1规范还有其他的许多内容,限于篇幅,这罩不再一一列举。由上述内容可见,高性能CPU对于供电电源电路的输出功耗需求越来越大,在VRDl0.1中要求输出功耗甚至高达170W以上。同时对于电压的精确性和稳定性的要求也达到了非常苛刻的地步,在大功率、大电流的情况下还要保持非常稳定和精准的负载线斜率。在VRDl0.O之前,CPU核心电压供电电路一般都是由三相或两相的PWM控制方式,这种方式已经无法满足100A以上的大电流需求。本文的设计使用了4相PWM控制,可以满足VRDl0.1的严格要求,以下详细叙述之。
3 大功率CPU核心电压电路的设计
图l所示即为本文提出的满足VRD101要求的大功率CPU核心电压供电电路。它使用了仙童(Fairchild)公司的FAN50192—4相PWM电源控制器做为丰控制芯片。FAN5019控制4个Fairchild的FAN5009 MOSFET驱动器。FAN5009驱动开关外接的高端和低端M0SFET,然后通过电感与电容器件的充、放电对VCCCORE进行供电。
FAN5019是一款多相(最高支持4相)DC/DC控制器,专为产生高电流、低电压的CPU核心电压而设计。本设计中,它以并行的方式同时驱动四个PWM通道,而且以交叉开关的方式来减少输入、输出的纹波电流,这样可以达到减少外围器件,降低成本的目的。FAN5019采用了温度补偿电感器电流检测技术,来满足VRDl0.1规则的负载线技术要求,而一般的PWM控制器都是采用RDS(ON)或感应电阻器来测量电流和设置负载线,精度无法满足要求。如图1所示,FAN5019的VID[5:0]输入与VRDl0.l规范定义完全一致,可以控制输出0.8375~1.600V以12.5mV步进的电压,另外它还具有短路保护,电流上限可调,过压保护等增加安全可靠性的技术。FAN5019向每个FAN5009送出PWM控制信号,而FAN5009通过内部电路将其转换为可以正确驱动高端和低端M0SFET的信号输出。FAN5009可以同时驱动高端和低端的MOSFET,其内置启动二极管,因此无需在外围电路中再添加二极管。
本设计的输入电压VIN为12V,额定输出电压VVID为1.500V,占空比D(Duty Cycle)为O.125,负载线斜率阻抗R0为1.OmΩ,ICCTDC大于115A,ICCMAX为125A,最大输出功耗为172.5W,最大电压纹波VRRIPLE为±5mV,每相的开关频率fSW设定为228kHz。外围元器什的具体参数如表l所列。
4 重要器件的选择与布局布线规则
4.1 功率MOSFET的选择
在选择高端和低端功率MOSFET时,主要考虑如下几个方面:
(1)较低的RDS(ON),应小于1OmΩ;
(2)尽可能高的导通电流;
(3)额定VDDS应该大于15V。
在选择低端MOSFET时,RDS(ON)是最重要的考虑因素,因为在正常工作时,低端的MOSFET导通时间较长,因而功率消耗较大。因此在本设计中.每相在低端都使用了两个FDD6682,其导通电流为75A,在VGS为10V时(正常工作状态),RDS(ON),为6.2mΩ,额定VDDS为30V。对高端的MOSFET而言,门电荷Qg也是重要的考虑因素,要求其越低越好,否则会影响开关速度进而影响功耗。因此在每相高端都使用了一个FDD6696,其导通电流为50A,在VGS为lOV时,RDS(ON)为8.0mΩ,额定VDDS为30V,门电荷为17nC,可以完令满足没计的要求。
4.2 输出电感的选择
输出电感有3个主要指标,电感量L、额定电流值Irated和直流电阻RDCR,电感的额定电流值是电感线圈的饱和电流或过热电流中较小的值。为使4相的输出电流总量大于等于125A,每相的输出电感额定电流应大于等于31.25A。电感量的取值与工作频率,纹波电流等因素都有一定的相关,可以根据公式进行计算:
式中:VCCCORE为输出电压;RO负载线斜率电阻;n为相数;D为每一相的占空比;fSW开关频率;VRIPPLE为最大纹波电压。
根据前面提到的设计参数,可以计算得输出电感的电感量应该大于658nH。电感的直流电阻RDCR最好取值在R0的O.5倍到l倍之间,这是因为,电感的RDCR会用来监测每相的输出电流,如果RDCR值太小,会引起较大的测量误差,影响设计的正常运行,如果RDCR值太大,又会造成较大的能量损耗,影响设计的效率。因此,我们选用了线艺电子(Coilcraft)公司的电感SER2009—681ML,其额定电流为45A,电感量为680 nH,直流电阻为0.588mΩ,完全满足设计对输出电感的要求。
4.3 布局布线
布局布线对电路稳定性、精确性的最终实现起着至关重要的作用,图2是本设计在4层PCB上的布局图,遵循如下的布局布线规则。
(1)输入电容CIN必须放置在尽量靠近高端MOSFET的漏极,其阴极应该放置在靠近低端MOSFET的源极,且每柑都应该至少放置一个输入电容。
(2)每相的FAN5009驱动器应该靠近各相的MOSFET。
(3)FAN5019应该放置在靠近COUT但是远离CIN的阴极和低端MOSFFT的源极处。其周围的元件应该放置在尽量靠近它的位置,并且它们与FAN5019之间应该用尽量粗的线来连接。FB和CSSUM两个引脚的线是最为重要的,应尽量短,且远离其他线。FAN5019及其周围的元件应该使用独立的模拟地平面(包括其底下的PCB电源层平面)来接地。
(4)因为设计的电流非常大,因此在PCB各层之间传输电流时要尽可能多州穿孔以减小电流通路的电阻和电感效应,粗略的估算方法是1mm直径的穿孔可以允许3A电流。穿孔还可以帮助IC散热。
(5)输出电容CX及CZ应该尽町能靠近CPU的插座或CPU引脚。
(6)供电电路相关的PCR走线都应该尽可能的宽,并且保持各自间距,以避免EMI问题。
(7)布局应合理紧凑,并且充分考虑散热问题。
5 实验结果
本文介绍的大功率CPU供电电路经过PCB样板制作和调试,已经达到正常工作的要求,表2为实验测量样板的输出电压负载线的结果。实验使用了Intel公司的Voltage Transient Test Tool进行电压瞬态响应的测试,测试节点为LGA775CPU插座的U27与V27引脚,VCCOORE=1.500V。从实验结果可见此电路的设计可以达到VRDlO.1要求。
浏览量:2
下载量:0
时间:
CPU的核心电压是什么,很多人都会有这种疑惑,现在,让小编为您做下介绍吧。
CPU的核心电压(Supply Voltage),即CPU核心正常工作所需的电压。
同一核心的CPU其核心电压是可变的,不同的CPU可能会有不同的核心电压:1.30V、1.35V或1.40V。
越低的电压能上的频率越高,cpu的体质越好,相反,体质则越差。SNB风冷貌似一般都是1.3V以下,再高温度就很高了,台机一般也是这个电压,笔记本高于1.35V就不安全了,大大加速核心寿命损耗。
CPU型号不同,核心电压不同,一般情况下电压在1-1.5v之间否属于正常电压。
什么是CPU核心电压:
CPU的工作电压,即CPU正常工作所需的电压。任何电器在工作的时候都需要电,自然也有对应额定电压,CPU也不例外。
CPU的工作电压分为两个方面,CPU的核心电压与I/O电压。
核心电压即驱动CPU核心芯片的电压;
I/O电压则指驱动I/O电路的电压;
通常CPU的核心电压小于等于I/O电压。
目前CPU的工作电压有一个非常明显的下降趋势,较低的工作电压主要三个优点:
采用低电压的CPU的芯片总功耗降低了。功耗降低,系统的运行成本就相应降低,这对于便携式和移动系统来说非常重要,使其现有的电池可以工作更长时间,从而使电池的使用寿命大大延长;
功耗降低,致使发热量减少,运行温度不过高的CPU可以与系统更好的配合;
降低电压是CPU主频提高的重要因素之一。
浏览量:3
下载量:0
时间:
cpu双核心四线程什么意思,下面是读文网小编带来的关于cpu双核心四线程什么意思:的内容,欢迎阅读!
1:什么是超线程技术?超线程技术就是利用特殊的硬件指令,把两个逻辑内核模拟成两个物理芯片,让单个处理器都能使用线程级并行计算,进而兼容多线程操作系统和软件,减少了CPU的闲置时间,提高的CPU的运行效率。因此支持Intel超线程技术的cpu,打开超线程设置,允许超线程运行后,在操作系统中看到的cpu数量是实际物理cpu数量的两倍,就是1个cpu可以看到两个,两个可以看到四个。
有超线程技术的CPU需要芯片组、软件支持,才能比较理想的发挥该项技术的优势。操作系统如:Microsoft Windows XP、Microsoft Windows 2003,Linux kernel,Windows 7,Windows 8
浏览量:4
下载量:0
时间:
核心(Die)又称为内核,是CPU最重要的组成部分。最近有不少网友问到了一些关于cpu的问题,那么CPU核心类型是什么??读文网小编跟大家科普一下。
CPU中心那块隆起的芯片就是核心,是由单晶硅以一定的生产工艺制造出来的,CPU所有的计算、接受/存储命令、处理数据都由核心执行。各种CPU核心都具有固定的逻辑结构,一级缓存、二级缓存、执行单元、指令级单元和总线接口等逻辑单元都会有科学的布局。
为了便于CPU设计、生产、销售的管理,CPU制造商会对各种CPU核心给出相应的代号,这也就是所谓的CPU核心类型。
不同的CPU(不同系列或同一系列)都会有不同的核心类型(例如Pentium4的Northwood,Willamette以及K6-2的CXT和K6-2+的ST-50以及最新酷睿2的Conroe等等),甚至同一种核心都会有不同版本的类型(例如Northwood核心就分为B0和C1等版本),核心版本的变更是为了修正上一版存在的一些错误,并提升一定的性能,而这些变化普通消费者是很少去注意的。
每一种核心类型都有其相应的制造工艺(例如0.25um、0.18um、0.13um、0.09um以及最新的65nm、45nm等)、核心面积(这是决定CPU成本的关键因素,成本与核心面积基本上成正比)、核心电压、电流大小、晶体管数量、各级缓存的大小、主频范围、流水线架构和支持的指令集(这两点是决定CPU实际性能和工作效率的关键因素)、功耗和发热量的大小、封装方式(例如S.E.P、PGA、FC-PGA、FC-PGA2等等)、接口类型(例如Socket370,SocketA,Socket478,SocketT,Slot1,Socket940,SocketAM2,LGA775等等)、前端总线频率(FSB)等等。因此,核心类型在某种程度上决定了CPU的工作性能。
一般说来,新的核心类型往往比老的核心类型具有更好的性能(例如同频的Northwood核心Pentium41.8AGHz就要比Willamette核心的Pentium41.8GHz性能要高),但这也不是绝对的,这种情况一般发生在新核心类型刚推出时,由于技术不完善或新的架构和制造工艺不成熟等原因,可能会导致新的核心类型的性能反而还不如老的核心类型的性能。
例如,早期Willamette核心Socket423接口的Pentium4的实际性能不如Socket370接口的Tualatin核心的PentiumIII和赛扬,现在的低频Prescott核心Pentium4的实际性能不如同频的Northwood核心Pentium4等等,但随着技术的进步以及CPU制造商对新核心的不断改进和完善,新核心的中后期产品的性能必然会超越老核心产品。目前市面上的英特尔酷睿2和AMD羿龙(Phenom)甚至最新的英特尔Corei7都是非常优秀的CPU。
CPU核心的发展方向是更低的电压、更低的功耗、更先进的制造工艺、集成更多的晶体管、更小的核心面积(这会降低CPU的生产成本从而最终会降低CPU的销售价格)、更先进的流水线架构和更多的指令集、更高的前端总线频率、集成更多的功能(例如集成内存控制器等等)以及双核心和多核心(也就是1个CPU内部有2个或更多个核心)等。CPU核心的进步对普通消费者而言,最有意义的就是能以更低的价格买到性能更强的CPU。
看过“ CPU核心类型是什么 ”
浏览量:3
下载量:0
时间:
CPU的中间就是我们平时称作核心芯片或CPU内核的地方,这颗由单晶硅做成的芯片可以说是电脑的大脑了,所有的计算、接受/存储命令、处理数据都是在这指甲盖大小的地方进行的。下面是读文网小编带来的关于cpu有多少个核心的的内容,欢迎阅读!
为了便于CPU设计、生产、销售的管理,CPU制造商会对各种CPU核心给出相应的代号,这也就是所谓的CPU核心类型。不同的CPU(不同系列或同一系列)都会有不同的核心类型(例如Pentium 4的Northwood,Willamette以及K6-2的CXT和K6-2+的ST-50等等),甚至同一种核心都会有不同版本的类型(例如Northwood核心就分为B0和C1等版本),核心版本的变更是为了修正上一版存在的一些错误,并提升一定的性能,而这些变化普通消费者是很少去注意的
CPU内核。每一种核心类型都有其相应的制造工艺(例如0.25um、0.18um、0.13um、0.09um、0.065um、以及0.045um等)、核心面积(这是决定CPU成本的关键因素,成本与核心面积基本上成正比)、核心电压、电流大小、晶体管数量、各级缓存的大小、主频范围、流水线架构和支持的指令集(这两点是决定CPU实际性能和工作效率的关键因素)、功耗和发热量的大小、封装方式(例如S.E.P、PGA、FC-PGA、FC-PGA2等等)、接口类型(例如LGA775、Socket 370,Socket A,Socket 478,Socket T,Slot 1、Socket 940等等)、前端总线频率(FSB)等等。
因此,核心类型在某种程度上决定了CPU的工作性能。一般说来,新的核心类型往往比老的核心类型具有更好的性能(例如同频的Northwood核心Pentium 4 1.8A GHz就要比Willamette核心的Pentium 4 1.8GHz性能要高),但这也不是绝对的,这种情况一般发生在新核心类型刚推出时,由于技术不完善或新的架构和制造工艺不成熟等原因,可能会导致新的核心类型的性能反而还不如老的核心类型的性能。
例如,早期Willamette核心Socket 423接口的Pentium 4的实际性能不如Socket 370接口的Tualatin核心的Pentium III和赛扬,低频Prescott核心Pentium 4的实际性能不如同频的Northwood核心Pentium 4等等,但随着技术的进步以及CPU制造商对新核心的不断改进和完善,新核心的中后期产品的性能必然会超越老核心产品。
浏览量:3
下载量:0
时间:
CPU是电脑的重要组成部分,是不可缺少的角色。下面是读文网小编带来的关于Linux top命令查看多核CPU每个核心的使用率的内容,欢迎阅读!
top命令是linux下常用的工具,可以查看各个进程的CPU使用情况。先看一个实例:
这是Ramnode双核VPS的top显示结果:
左上角可以看到CPU的使用率是11.3%,但是看下面的进程,plugin-containe就占用了17.6%。出现这样的情况是因为11.3%指的是所有核心的占用情况,17.6%指的是运行当前进程的核心的使用率。有时候可以看到某个进程的使用率已经达到100%了,但是top显示的也只有50%而已。下面我们来做一个测试:
使用的命令是:
md5sum /dev/zero &
执行上面命令的核心使用率超过了90%,左上角显示的CPU使用率只有50%多
在top窗口中,按数字键“1”就可以看到每个核心的使用情况。
看了Linux top命令查看多核CPU每个核心的使用率文章内容的人还看:
浏览量:3
下载量:0
时间:
CPU作为电脑的核心组成部份,它的好坏直接影响到电脑的性能。下面是读文网小编带来的关于核心最多的cpu的内容,欢迎阅读!
缓存缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。
L1Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32-256KB。
L2Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,以前家庭用CPU容量最大的是512KB,笔记本电脑中也可以达到2M,而服务器和工作站上用CPU的L2高速缓存更高,可以达到8M以上。
L3Cache(三级缓存),分为两种,早期的是外置,内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显著的提升。
比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。
在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。
浏览量:2
下载量:0
时间:
你们知道苹果6cpu核心数是多少吗?下面是读文网小编带来的关于苹果6cpu核心数是多少的内容,欢迎阅读!
iPhone 6 是苹果公司(Apple)在2014年9月9日推出的一款手机,已于2014年9月19日正式上市。
iPhone 6采用4.7英寸屏幕,分辨率为1334*750像素,内置64位构架的苹果A8处理器,性能提升非常明显;同时还搭配全新的M8协处理器,专为健康应用所设计;采用后置800万像素镜头,前置120万像素 鞠昀摄影FaceTime HD 高清摄像头;并且加入Touch ID支持指纹识别,首次新增NFC功能;也是一款三网通手机,4G LTE连接速度可达150Mbps,支持多达20个LTE频段。
北京时间2014年9月10日凌晨1点,苹果公司在加州库比蒂诺德安萨学院的弗林特艺术中心正式发布其新一代产品 iPhone 6。9月12日开启预定,9月19日上市。首批上市的国家和地区包括美国、加拿大、法国、德国、英国、中国香港、日本、新加坡和澳大利亚,中国大陆无缘iPhone 6首发。[2]
2014年10月10日零时,苹果中国在线商店正式开启iPhone 6/6 Plus预售,iPhone 6售价5288元起,iPhone 6 Plus售6088元起,每名用户可分别最多购买2台,到货日期10月17日,同时三大运营商也同步发售。
这款设计图出自设计师卡萨巴-纳吉(Csaba Nagy)之手,而在他眼中的iPhone6应该朝着透明的方向靠拢。因而,他将该设备打造成了一款极薄、透明,且内置有可互动玻璃外观的“神机”。据悉,设计图中的iPhone6拥有一个内置有LED灯的HOME键,只有在用户按下时才会亮起。而且,该手机还具备有全息投影功能,可以将手机画面投射到一块相对更宽的背景中。
浏览量:2
下载量:0
时间:
CPU的核心数到底是什么意思呢?下面是读文网小编带来的关于什么是cpu核心数的内容,欢迎阅读!
外频与前端总线(FSB)频率很容易被混为一谈。前端总线的速度指的是CPU和北桥芯片间总线的速度,更实质性的表示了CPU和外界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了PCI及其他总线的频率。
之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。
随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来。
主频:双核是指的1个CPU内有两个物理内核心,并不是“双主频”。CPU的主频,即CPU内核工作的时钟频率(CPU Clock Speed)。通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。很多人认为CPU的主频就是其运行速度,其实不然。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。
主频和实际的运算速度存在一定的关系,但目前还没有一个确定的公式能够定量两者的数值关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等)。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。
在486之前,CPU的主频还处于一个较低的阶段,CPU的主频一般都等于外频。而在486出现以后,由于CPU工作频率不断提高,而PC机的一些其他设备(如插卡、硬盘等)却受到工艺的限制,不能承受更高的频率,因此限制了CPU频率的进一步提高。因此出现了倍频技术,该技术能够使CPU内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。倍频技术就是使外部设备可以工作在一个较低外频上,而CPU主频是外频的倍数。
在Pentium时代,CPU外频一般是60/66MHz,从Pentium Ⅱ 350开始,CPU外频提高到100MHz,当下CPU外频已经达到了200MHz。由于正常情况下外频和内存总线频率相同,所以当CPU外频提高后,跟内存之间的交换速度也相应得到了提高,对提高电脑的整体运行速度影响较大。
浏览量:2
下载量:0
时间:
CPU的核心在CPU中起着重要的作用,那么,手机CPU的核心是什么呢?下面是读文网小编带来的关于什么是手机cpu核心的内容,欢迎阅读!
有几个手机的CPU核心相当于几个大脑。
手机处理器的性能不仅取决主频的高低,其采用的架构、缓存、带宽、GPU以及系统优化等都对处理器的性能产生重要的影响。所以,如果其它因素配置不够, 仅仅主频高,也很有可能出现高频低能的现象。
1. 架构是关键
架构做为处理器的基础,对于处理器的整体性能起到了决定性的作用,不同架构的处理器同主频下,性能差距可以达到2-5倍。可见架构的重要性。
采用相同架构的处理器,性能基本上已 经锁定在一定的范围之内,不会有本质的区别。所以,看处理器的性能要先看架构。
目前,手机处理器的架构主要有ARM和Intel X86。ARM架构在手机处理器领域占有90%的市场份额,处于绝对的垄断地位。目前主流的处理器芯片厂商几乎都是采用了ARM架构,比如,高通、德州仪器、英伟达、三星及苹果等。
低端的智能手机一般还在采用比较陈旧的ARM11架构,比如德州仪器OMAP2420/2420(主 频为330MHz)以及高通
MSM7225/7227(主频为528MHz—800MHz)和MTK的一些处理器。
现在主流的中高端手机处理器基本上都采用了ARM Cortex-A8架构,速率可以在600MHz到超过1GHz的范围内调节,同频下,比ARM11性能提升3倍以上,而功耗却大大降低。比如德州仪器的 OMAP34x0和OMAP36x0系列处理器。而高通骁龙S2/S3的Scorpion架构。三星蜂鸟和苹果A4处理器,均是在A8的基础上优化而来。
现在最先进的处理器架构是ARM Cortex-A9,相对于ARM Cortex-A8,最大的区别在于支持多核心和乱序执行,并且性能继续得到了很大的提升。目前的大部分双核处理器都采用了ARM Cortex-A9架构,比如Tegra 2、德州仪器OMAP44x0系列、三星猎户座E4210和苹果A5等,包括最近推出的首款四核处理器Tegra 3。
而更为先进的ARM Cortex-A15架构将是下一代ARM发展的趋势。
2. 工艺制程
制程工艺的纳米是指IC内电路与电路之间的距离。更小的制程也就意味着更低的功耗和散热,同时在同样面积的芯片上更小的制程也就能集成更多的晶 体,而晶圆的数量又是决定处理器性能的关键因素,所以,工艺制程越先进,处理器性能越强。手机处理器从较早的90纳米,到后来的65纳米、45纳米、32 纳米一直发展到目前最新的28纳米,而16纳米制程工艺将是下一代CPU的发展目标。
3. 总线带宽
总线带宽是指在固定的的时间可传输的数据数量,带宽越大,则代表传输能力也越强。一般Cortex-A8架构的单核处理器的总线宽度为 64bit、200MHz,总带宽1.6GB/S,就已经够用了。而A9架构的双核处理器则能够达到128bit,200MHz,总带宽为3.2GB /S。
4. 图形处理器GPU
自从苹果iPhone出现以后,再加上Android的崛起,移动多媒体得到了长足的发展,以前在PC的配置中经常看到的GPU如今也成为了智能手机处理器必不可少的硬件配置。GPU甚至在运行大型3D游戏中,起到了决定性作用。
苹果、德州仪器以及三星蜂鸟处理器都采用的是Imagination公司研发的PowerVR GPU,采用PowerVR GPU的处理器在游戏兼容性方面还是比较好的。从iPhone系列手机的性能来看,PowerVR GPU在性能上也是相当强劲的。
5. 处理器主频
CPU的主频,即CPU内核工作的时钟频率(CPU Clock Speed)。通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。很多人认为CPU的主频就是其运行速度,其实不然。CPU的主频 表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。主频和实际的运算速度存在一定的关系,但目前还没有一个确定的公式能够定 量两者的数值关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等)。
由于主频并不直接代表运算速度,所 以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。比如Tegra 2,虽然性能很强,但是由于带宽太小,所以性能发挥不出来。另外,经常被一些玩家诟病“高频低能”的高通处理器,由于采用了异步双核的方式,主频虽然能达 到1.5GHz,但是性能较相同主频Cortex-A9同步双核的产品要弱(当然这也带来了省电的优势)。因此主频仅是CPU性能表现的一个方面,而不代 表CPU的整体性能。
6. 运行内存RAM
手机的存储器有ROM和RAM,ROM是只读存储器,功能相当于存储卡,和处理器的性能关系不大,而影响处理器性能的关键因素是RAM。RAM越大,运行大型游戏以及多线程程序时速度就越快。比如同样为1.5GHz主频的两颗处理器,同等条件下,采用512MB RAM的处理器就比采用256MB RAM的处理器快。所以,手机的RAM越大越好。目前比较高端的手机基本上都采用了最大的1GB内存。
7. 系统优化
整机是否能够流畅运行,系统优化也起到了很大的作用。大家经常会看到,采用同样硬件配置的两款手机,性能差距却很大,这很大一部分原因就是系统优化方面的不同造成的。
大家都知道,苹果手机的处理器配置从来都不是最高的,但是它却是运行最流畅的。这是因为,苹果手机采用的iOS系统是以用户体验和应用为主导 的,其硬件配置的选择完全是根据系统和软件的需求,也就是说软件的发展带动了硬件的提升,使得软件和硬件达到完美的协调和统一,将硬件的性能发挥到极致。 而不是盲目的提升硬件。
Android手机是硬件带动软件的发展。大家可以看到,近两年,Android手机的硬件发展极为迅速,但是每一次硬件配置的飞跃,却没能及时带来性能 的大幅提升。一般都会需要半年到一年的时间,系统和软件针对新的硬件进行优化之后,才能够体现出新的硬件的性能。
浏览量:2
下载量:0
时间:
CPU作为手机的核心组成部份,它的好坏直接影响到手机的性能。下面是读文网小编带来的关于什么是手机cpu核心数的内容,欢迎阅读!
高通公司首先是一个技术创新者和推动者。高通公司将其收入的相当大一部分用于基础技术研发,并将几乎所有专利技术提供给各种规模的用户设备授权厂商和系统设备授权厂商。高通公司的商业模式帮助这些系统设备和用户设备制造商以比其自行研发技术、开发芯片和软件解决方案低得多的成本,将产品更快地推向市场。此外,高通公司还允许授权厂商在其被授权的CDMA产品中使用高通公司不断增加的专利技术种类。例如EV-DO Rev A、HSDPA/HSUPA、OFDM(A)等新技术,所收取的专利费费率不高于高通公司的全球CDMA专利费费率。这为高通公司的授权厂商提供了可预测的模式。
在1985年7月,7个行业资深高管聚集到了Irwin Jacobs博士圣地亚哥的家讨论一个想法。这些梦想家们—Franklin Antonio、Adelia Coffman、Andrew Cohen、Klein Gilhousen、Irwin Jacobs、Andrew Viterbi和Harvey White决定他们想要构建“高质量通信”并制定了一个计划,这个计划最后演变为通信行业最伟大的创业成功故事之一--高通公司。
骁龙(Snapdragon)智能处理平台是美国高通公司推出的业界领先的全合一、全系列移动处理器,目前在全球范围内已支持三星、HTC、诺基亚、LG、索尼、华为、中兴等著名品牌的1000多款终端。2012年2月20日,高通正式将Snapdragon系列处理器的中文名称定为“骁龙”。
骁龙处理器平台是高度集成的移动优化系统芯片(SoC),结合了业内领先的3G/4G移动宽带技术与高通公司自有的基于ARM指令集的微处理器内核,拥有强大的多媒体功能、3D图形功能和GPS引擎。
骁龙支持的终端产品覆盖大众市场智能手机乃至高端智能手机、平板电脑及智能电视等全新的智能终端。骁龙的优势之一在于结合了强大的应用处理性能、无线2G、3G、4G及WiFi蓝牙等无线连接,和超低的功耗能力。为了更清晰的骁龙品牌下各款处理器产品的性能和功能,2013年1月,美国高通公司宣布为骁龙处理器引入全新命名方式和层级结构——按照性能水平被划分为四个层级,分别为骁龙800系列、600系列、400系列和200系列处理器。全新的骁龙处理器系列将会延伸到更多的消费类电子产品。
骁龙处理器的优势在于结合了强大的应用处理性能和超低的功耗能力。
高通公司正在构建一个其他厂商可以用于创新的基础,以及创造可以降低产品成本的环境。高通公司的专利授权结构帮助了那些原来不生产GSM产品或更早期的模拟手机的厂商投入到开发、销售CDMA2000和WCDMA产品中来。这些新厂商的出现带来了市场竞争,降低了终端用户所要支付的成本,凭借扩展更丰富的功能和应用促进了创新,最终使消费者受益。
高通从名字看来并不像德州仪器、Intel那么响亮,可在智能手机玩家中,高通受到青睐的程度远远高于后两者。高通的骁龙处理器平台还能够兼容各种智能系统。同时高通的CPU芯片是首个能够兼容Android系统的,所以一下占据了Android手机CPU的半壁江山,Android是未来智能系统的大势所趋,高通就如同给这准备腾飞的Android加上了翅膀,前景一片光明。目前,所有采用WindowsPhone系统的智能终端都搭载骁龙处理器。
2014年4月,高通正式推出新一代移动处理平台骁龙810以及808,采用64位处理器,其中骁龙810内建Cortex-A57/A53双四核处理器,以及Adreno 430图形芯片。
2014年9月,HTC在IFA德国柏林国际消费电子展览会上发布HTC Desire 820,HTCDesire 820 采用高通骁龙615,骁龙615是高通首款8核处理器,也是高通首款64位处理器。
浏览量:4
下载量:0
时间:
中央处理器(CentralProcessingUnit)的缩写,即CPU,CPU是电脑中的核心配件,只有火柴盒那么大,几十张纸那么厚,但它却是一台计算机的运算核心和控制核心。下面是读文网小编带来的关于最多核心的cpu的内容,欢迎阅读!
处理器(CPU)最多能有几个核,双核、四核还是八核?一家硅谷小公司给出的最新答案是:100个。这家名为Tilera的公司本月推出的一款处理器产品震惊业界,其拥有100个内核。在芯片制造商纷纷通过增加内核数量来创造应用的今天,Tilera创下了世界记录——要知道,大部分基于X86架构的芯片厂商目前只能制造出4到6核的芯片,英特尔最先进的CPU拥有8个内核,而AMD推出的Magny Cours也只拥有12个内核。Tilera的成立时间仅有5年,其创始人之一是麻省理工学院(MIT)教授阿南特·阿加瓦尔。由于这项在云计算技术方面的独特技术,使得该公司可以在云计算时代与英特尔、AMD、IBM等巨头直面竞争,最近其为台湾地区广达公司开发的云计算系统就被戴尔公司大量采用。今年10月,Tilera获得了广达的1000万美元投资。
打破常规的理由在于,他们采用了一种不同于X86架构的思维。近日,Tilera公司全球总裁兼CEO欧明德(Omid Tahernia)在上海接受本报记者独家专访时表示,传统CPU是一维总线架构,当核的个数超过了8个或者16个的时候,会产生性能上巨大的瓶颈,而Tilera基于两维的网状架构,把重点放在了核与核之间的通讯,这样的方式在提供高性能应用的同时也能大大节约功耗。
Tilera称,这款100核的产品性能是英特尔相关CPU产品的4倍,耗能却仅有其三分之一。1000核也不稀奇《21世纪》:现在芯片服务商都在谈多核,Tilera却提出了“众多核”的概念,应该怎样理解这个概念?欧明德:现在市场对多核的需求越来越多,主要是因为单核处理能力不可能像以往那样不断地提升。
从上世纪90年代开始,整个产业遵循摩尔定律,即芯片上可容纳的晶体管数目每隔18个月便会增加一倍,性能也提升一倍。随着时间的推移,频率越来越快,运营指令不断提升,这让芯片设计越来越多碰到瓶颈,特别是功耗的瓶颈,因此对多核的需求就越来越高。“众多核”跟云计算相关。
因为云计算时代对数据运算能力要求非常高,比如网络安全的防入侵管理,还有音视频的传输转换,计算量都非常大。在芯片发展过程中需要解决的核心的问题是功耗。
“众多核”可以很好解决这个问题,必然是一个趋势。《21世纪》:你们的100核产品,对英特尔这类传统CPU是一种颠覆吗?欧明德:绝对是这样。从性能比上看,我们这款产品是英特尔相关芯片的12倍。很多人都不相信可以做到100个内核,这对编程思维是一个很大挑战,但是我们做到了,而且我还可以说,100核不是上限。由于打破了摩尔定律的限制,这个数量可以不断向上,我们预计核的数量平均每两年会翻一倍,以后听到上千个内核的CPU也不稀奇。21世纪》:
这种颠覆性会在多大程度上冲击产业生态,或者引发产业格局的大变动?欧明德:在芯片产业的价值链上,这种情况总在发生。当出现一种新技术或者新模式,更多的新面孔也跟着出现,市场就会开始洗牌。比如最近大家都看到的联发科,就是抓住了一个机会从而改变了产业。一开始就把市场对准中国《21世纪》:Tilera成立仅有五年,为何就能掌握如此先进的技术,这五年来你们主要做了哪些工作?欧明德:虽然公司成立仅有5年,但从技术方面看已经有很多积累了。
从1994年起,我们的CTO就在麻省理工大学开始二维网状架构的多核研究。2002年,他做出第一款真正16核的半导体产品。2004年,我们引入了包括华登国际等在内的四家著名风投,台积电也是我们的策略投资人,目前我们已经进行了三轮融资,到2007年就正式推出了商用产品。近两年,我们的重点是建立品牌和提高客户接受度,目前在全球已经有37种语言的发布,这方面互联网帮了很大的忙。《21世纪》:未来在服务器市场你们将与英特尔等大型企业展开正面竞争,作为一家小公司,你认为优势何在?
欧明德:英特尔是一家很成功的公司,我们不希望引起太多他们的关注。需要强调的是,我们的技术来自MIT,有着16年的研发积累,目前拥有50多项多核相关的世界专利。
另外,在硅谷,高校和产业有着很紧密的联系,从研究到产业转化,再到获得商业成功,有着很成熟的经验。这让我们更有信心成功。说到具体的竞争优势,作为小公司,我们在技术的先进性方面更有优势,而且更加灵活。首先,我们只专注细分领域的核心技术发展,不会进入到英特尔的传统PC市场去跟他们竞争。
第二点更为重要,因为很多人不喜欢垄断,这让Tilera有机会得以发展。《21世纪》:听说Tilera的产品可以应用于TD-SCDMA制式的基站,可以说你们一开始就把市场对准了中国,这个决策是基于怎样的判断?欧明德:在TD-SCDMA系统里,这么一个高性能的多核处理器主要是集中在基站。在核心网上,我们主要做很多安全方面的处理。
Tilera技术可以让基站更加小型化、软件化和统一化。目前我们25%-30%的利润来自中国。中国的OEM市场做得非常好,而且中国厂商有一个特点,就是在采纳新技术方面走在了世界前列。
这让我们相信中国的客户能够很好地接纳Tilera的新技术。未来5年,随着云计算的发展,我想来自中国的利润百分比将会达到40%-45%。《21世纪》:你认为对Tilera来说目前的最大挑战是什么?欧明德:最大的挑战是要持续保持创新,保持在这个领域的技术领先性。另外一点,因为这是对编程思维的一个挑战,我们需要让更多人相信确实可以存在100个内核这件事。
浏览量:3
下载量:0
时间:
你们知道计算机的硬件系统的核心是CPU吗?下面是读文网小编带来的关于cpu是计算机硬件系统的核心吗的内容,欢迎阅读!
CPU是构成计算机的重要组成之一,并没有所谓的核心
中央处理器(CPU,Central Processing Unit)是一块超大规模的集成电路,是一台计算机的运算核心(Core)和控制核心( Control Unit)。它的功能主要是解释计算机指令以及处理计算机软件中的数据。
中央处理器主要包括运算器(算术逻辑运算单元,ALU,Arithmetic Logic Unit)和高速缓冲存储器(Cache)及实现它们之间联系的数据(Data)、控制及状态的总线(Bus)。它与内部存储器(Memory)和输入/输出(I/O)设备合称为电子计算机三大核心部件。
CPU的物理结构
CPU包括运算逻辑部件、寄存器部件和控制部件等。
CPU的逻辑部件
英文Logic components;运算逻辑部件。可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。
CPU的寄存器
寄存器部件,包括寄存器、专用寄存器和控制寄存器。 通用寄存器又可分定点数和浮点数两类,它们用来保存指令执行过程中临时存放的寄存器操作数和中间(或最终)的操作结果。 通用寄存器是中央处理器的重要部件之一。
CPU的控制部件
英文Control unit;控制部件,主要是负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。
其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。
微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。
简单指令是由(3~5)个微操作组成,复杂指令则要由几十个微操作甚至几百个微操作组成。
CPU的主要功能
CPU的处理指令
英文Processing instructions;这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。
CPU的执行操作
英文Perform an action;一条指令的功能往往是由计算机中的部件执行一系列的操作来实现的。CPU要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。
CPU的控制时间
英文Control time;时间控制就是对各种操作实施时间上的定时。在一条指令的执行过程中,在什么时间做什么操作均应受到严格的控制。只有这样,计算机才能有条不紊地工作。
CPU的处理数据
即对数据进行算术运算和逻辑运算,或进行其他的信息处理。
其功能主要是解释计算机指令以及处理计算机软件中的数据, 并执行指令。在微型计算机中又称微处理器,计算机的所有操作都受CPU控制,CPU的性能指标直接决定了微机系统的性能指标。CPU具有以下4个方面的基本功能:数据通信,资源共享,分布式处理,提供系统可靠性。运作原理可基本分为四个阶段:提取(Fetch)、解码(Decode)、执行(Execute)和写回(Writeback)。
浏览量:6
下载量:0
时间:
有时候为了更好地操作机器, 需要将某个进程绑定到具体的CPU上去,那么Ubuntu怎么绑定CPU进程呢?就让读文网小编来告诉大家Ubuntu绑定CPU进程的方法吧,希望对大家有所帮助。
taskset -cp 《CPU ID | CPU IDs》 《Process ID》
下面用一个简单的例子来说明怎样做到。
1. CPU利用率达100%的样例代码:
class Test {
public static void main(String args[]) {
int i = 0;
while (true) {
i++;
}
}
}
2. 编译并运行上面的样例代码
# javac Test.java
# java Test &
[1] 26531
3. 使用htop命令查看CPU的利用率
如果未安装htop工具,执行下面的命令:
# apt-get install htop
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
htop
0 upgraded, 1 newly installed, 0 to remove and 41 not upgraded.
Need to get 66.9 kB of archives.
After this operation, 183 kB of additional disk space will be used.
Get:1 http://mirrors.163.com/ubuntu/ precise/universe htop amd64 1.0.1-1 [66.9 kB]
Fetched 66.9 kB in 0s (163 kB/s)
Selecting previously unselected package htop.
(Reading database ... 57100 files and directories currently installed.)
Unpacking htop (from .../htop_1.0.1-1_amd64.deb)...
Processing triggers for man-db ...
Setting up htop (1.0.1-1)...
安装完成后,执行命令:
# htop
上面的视图可以看到,CPU2的利用率达到100%,且这个进程有可能被分配到其它CPU核上运行,这个分配是不定的。
4. 进程绑定CPU核
运行以下命令,把此Java进程(进程ID号为26502)永久的分配给5号CPU核(CPU核号从0开始计算,因此序号4指的是5号CPU核)
# taskset -cp 5 26531
pid 26531‘s current affinity list: 0-7
pid 26531’s new affinity list: 5
从上面的视图中可以看到6号CPU核的利用率为100%。
随着CPU核的多个化,这样的绑定方法也是一样的,无论绑定哪个CPU核都能启动同样的效果,相信大家都追求运行的高速度,赶快来学习绑定CPU进程的方法吧!
看过“Ubuntu怎么绑定CPU进程”
浏览量:2
下载量:0
时间: